These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26197127)

  • 1. Laser-Frequency Stabilization Based on Steady-State Spectral-Hole Burning in Eu(3+)∶Y(2)SiO(5).
    Cook S; Rosenband T; Leibrandt DR
    Phys Rev Lett; 2015 Jun; 114(25):253902. PubMed ID: 26197127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5.
    Leibrandt DR; Thorpe MJ; Chou CW; Fortier TM; Diddams SA; Rosenband T
    Phys Rev Lett; 2013 Dec; 111(23):237402. PubMed ID: 24476301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding laser stabilization using spectral hole burning.
    Julsgaard B; Walther A; Kröll S; Rippe L
    Opt Express; 2007 Sep; 15(18):11444-65. PubMed ID: 19547502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser.
    Wang C; Lv S; Liu F; Bi J; Li L; Chen L
    Rev Sci Instrum; 2014 Aug; 85(8):083113. PubMed ID: 25173252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability.
    McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S
    Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature.
    Chen QF; Troshyn A; Ernsting I; Kayser S; Vasilyev S; Nevsky A; Schiller S
    Phys Rev Lett; 2011 Nov; 107(22):223202. PubMed ID: 22182027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of residual amplitude modulation to 1 × 10⁻⁶ for frequency modulation and laser stabilization.
    Zhang W; Martin MJ; Benko C; Hall JL; Ye J; Hagemann C; Legero T; Sterr U; Riehle F; Cole GD; Aspelmeyer M
    Opt Lett; 2014 Apr; 39(7):1980-3. PubMed ID: 24686654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye laser spectrometer for ultrahigh spectral resolution: design and performance.
    Helmcke J; Lee SA; Hall JL
    Appl Opt; 1982 May; 21(9):1686-94. PubMed ID: 20389917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.
    Parker B; Marra G; Johnson LA; Margolis HS; Webster SA; Wright L; Lea SN; Gill P; Bayvel P
    Appl Opt; 2014 Dec; 53(35):8157-66. PubMed ID: 25608055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital control of residual amplitude modulation at the 10
    Gillot J; Falzon Tetsing-Talla S; Denis S; Goavec-Merou G; Millo J; Lacroûte C; Kersalé Y
    Opt Express; 2022 Sep; 30(20):35179-35188. PubMed ID: 36258475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the clock laser for an Yb lattice clock using an optic fiber comb.
    Hosaka K; Inaba H; Nakajima Y; Yasuda M; Kohno T; Onae A; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):606-12. PubMed ID: 20211777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator.
    Hoffmann M; Schilt S; Südmeyer T
    Opt Express; 2013 Dec; 21(24):30054-64. PubMed ID: 24514555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive repetition-rate stabilization for a mode-locked fiber laser by electro-optic modulation.
    Yu T; Jiang S; Fang J; Liu T; Wu X; Yan M; Huang K; Zeng H
    Opt Lett; 2022 Mar; 47(5):1178-1181. PubMed ID: 35230321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning.
    Böttger T; Pryde GJ; Cone RL
    Opt Lett; 2003 Feb; 28(3):200-2. PubMed ID: 12656331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals.
    Gobron O; Jung K; Galland N; Predehl K; Le Targat R; Ferrier A; Goldner P; Seidelin S; Le Coq Y
    Opt Express; 2017 Jun; 25(13):15539-15548. PubMed ID: 28788976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning.
    Sellin PB; Strickland NM; Carlsten JL; Cone RL
    Opt Lett; 1999 Aug; 24(15):1038-40. PubMed ID: 18073933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator.
    Swann WC; Baumann E; Giorgetta FR; Newbury NR
    Opt Express; 2011 Nov; 19(24):24387-95. PubMed ID: 22109466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 8  ×  10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity.
    Häfner S; Falke S; Grebing C; Vogt S; Legero T; Merimaa M; Lisdat C; Sterr U
    Opt Lett; 2015 May; 40(9):2112-5. PubMed ID: 25927798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband radio-frequency spectrum analysis in spectral-hole-burning media.
    Colice M; Schlottau F; Wagner KH
    Appl Opt; 2006 Sep; 45(25):6393-408. PubMed ID: 16912776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.