These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26197304)

  • 41. Mechanical properties of branched actin filaments.
    Razbin M; Falcke M; Benetatos P; Zippelius A
    Phys Biol; 2015 Jun; 12(4):046007. PubMed ID: 26040560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-sized liposomes that mimic cell motility and the cell cortex.
    Lemière J; Carvalho K; Sykes C
    Methods Cell Biol; 2015; 128():271-85. PubMed ID: 25997352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The comings and goings of actin: coupling protrusion and retraction in cell motility.
    Small JV; Resch GP
    Curr Opin Cell Biol; 2005 Oct; 17(5):517-23. PubMed ID: 16099152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct measurement of the lamellipodial protrusive force in a migrating cell.
    Prass M; Jacobson K; Mogilner A; Radmacher M
    J Cell Biol; 2006 Sep; 174(6):767-72. PubMed ID: 16966418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The candidate tumor suppressor SASH1 interacts with the actin cytoskeleton and stimulates cell-matrix adhesion.
    Martini M; Gnann A; Scheikl D; Holzmann B; Janssen KP
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1630-40. PubMed ID: 21820526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis.
    Mogilner A; Edelstein-Keshet L
    Biophys J; 2002 Sep; 83(3):1237-58. PubMed ID: 12202352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Weak force stalls protrusion at the leading edge of the lamellipodium.
    Bohnet S; Ananthakrishnan R; Mogilner A; Meister JJ; Verkhovsky AB
    Biophys J; 2006 Mar; 90(5):1810-20. PubMed ID: 16326894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Locomotion of fish epidermal keratocytes on spatially selective adhesion patterns.
    Csucs G; Quirin K; Danuser G
    Cell Motil Cytoskeleton; 2007 Nov; 64(11):856-67. PubMed ID: 17712861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polarization of plasma membrane microviscosity during endothelial cell migration.
    Vasanji A; Ghosh PK; Graham LM; Eppell SJ; Fox PL
    Dev Cell; 2004 Jan; 6(1):29-41. PubMed ID: 14723845
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components.
    Cojoc D; Difato F; Ferrari E; Shahapure RB; Laishram J; Righi M; Di Fabrizio EM; Torre V
    PLoS One; 2007 Oct; 2(10):e1072. PubMed ID: 17957254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of membrane stiffness and actin turnover on the force exerted by DRG lamellipodia.
    Amin L; Ercolini E; Shahapure R; Migliorini E; Torre V
    Biophys J; 2012 Jun; 102(11):2451-60. PubMed ID: 22713560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system.
    Isogai T; Danuser G
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632262
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive F-Actin Polymerization and Localized ATP Production Drive Basement Membrane Invasion in the Absence of MMPs.
    Kelley LC; Chi Q; Cáceres R; Hastie E; Schindler AJ; Jiang Y; Matus DQ; Plastino J; Sherwood DR
    Dev Cell; 2019 Feb; 48(3):313-328.e8. PubMed ID: 30686527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A continuum mechanical model of cell motion driven by a biphasic traction stress.
    Abeyaratne R; Purohit PK
    J R Soc Interface; 2024 Jan; 21(210):20230543. PubMed ID: 38228181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative Analysis of Cell Edge Dynamics during Cell Spreading.
    Iu E; Bogatch A; Plotnikov SV
    J Vis Exp; 2021 May; (171):. PubMed ID: 34096911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanisms of leading edge protrusion in interstitial migration.
    Wilson K; Lewalle A; Fritzsche M; Thorogate R; Duke T; Charras G
    Nat Commun; 2013; 4():2896. PubMed ID: 24305616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The actin-based nanomachine at the leading edge of migrating cells.
    Abraham VC; Krishnamurthi V; Taylor DL; Lanni F
    Biophys J; 1999 Sep; 77(3):1721-32. PubMed ID: 10465781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. T cell migration requires ion and water influx to regulate actin polymerization.
    de Boer LL; Vanes L; Melgrati S; Biggs O'May J; Hayward D; Driscoll PC; Day J; Griffiths A; Magueta R; Morrell A; MacRae JI; Köchl R; Tybulewicz VLJ
    Nat Commun; 2023 Dec; 14(1):7844. PubMed ID: 38057317
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two distinct actin waves correlated with turns-and-runs of crawling microglia.
    Yang TD; Park K; Park JS; Lee JH; Choi E; Lee J; Choi W; Choi Y; Lee KJ
    PLoS One; 2019; 14(8):e0220810. PubMed ID: 31437196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CYRI proteins: controllers of actin dynamics in the cellular 'eat vs walk' decision.
    Machesky LM
    Biochem Soc Trans; 2023 Apr; 51(2):579-585. PubMed ID: 36892409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.