These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26197515)

  • 21. Revisiting the dipeptidyl carboxypeptidase inhibitor captopril as a source of pan anti-trypanosomatid agents.
    Garsi JB; Hocine S; Hensienne R; Moitessier M; Denton H; Major LL; Smith TK; Hanessian S
    Bioorg Med Chem Lett; 2024 Sep; 110():129883. PubMed ID: 39013490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel insights for dihydroorotate dehydrogenase class 1A inhibitors discovery.
    Cheleski J; Rocha JR; Pinheiro MP; Wiggers HJ; da Silva AB; Nonato MC; Montanari CA
    Eur J Med Chem; 2010 Dec; 45(12):5899-909. PubMed ID: 20965617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Irreversible inactivation of trypanothione reductase by unsaturated Mannich bases: a divinyl ketone as key intermediate.
    Lee B; Bauer H; Melchers J; Ruppert T; Rattray L; Yardley V; Davioud-Charvet E; Krauth-Siegel RL
    J Med Chem; 2005 Nov; 48(23):7400-10. PubMed ID: 16279799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptoid inhibition of trypanothione reductase as a potential antitrypanosomal and antileishmanial drug lead.
    Chan C; Yin H; McKie JH; Fairlamb AH; Douglas KT
    Amino Acids; 2002 Jun; 22(4):297-308. PubMed ID: 12107758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of potential trypanothione reductase inhibitors among commercially available β-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking.
    Rodríguez-Becerra J; Cáceres-Jensen L; Hernández-Ramos J; Barrientos L
    Mol Divers; 2017 Aug; 21(3):697-711. PubMed ID: 28656524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of trypanothione reductase inhibitory activity by 1,3,4-thiadiazolium-2-aminide derivatives and molecular docking studies.
    Rodrigues RF; Castro-Pinto D; Echevarria A; dos Reis CM; Del Cistia CN; Sant'Anna CM; Teixeira F; Castro H; Canto-Cavalheiro M; Leon LL; Tomás A
    Bioorg Med Chem; 2012 Mar; 20(5):1760-6. PubMed ID: 22304847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfonamide-metal complexes endowed with potent anti-Trypanosoma cruzi activity.
    Chohan ZH; Hernandes MZ; Sensato FR; Moreira DR; Pereira VR; Neves JK; de Oliveira AP; de Oliveira BC; Leite AC
    J Enzyme Inhib Med Chem; 2014 Apr; 29(2):230-6. PubMed ID: 23432595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets.
    Vermelho AB; Capaci GR; Rodrigues IA; Cardoso VS; Mazotto AM; Supuran CT
    Bioorg Med Chem; 2017 Mar; 25(5):1543-1555. PubMed ID: 28161253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors.
    Galarreta BC; Sifuentes R; Carrillo AK; Sanchez L; Amado Mdel R; Maruenda H
    Bioorg Med Chem; 2008 Jul; 16(14):6689-95. PubMed ID: 18558492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi.
    Jones DC; Ariza A; Chow WH; Oza SL; Fairlamb AH
    Mol Biochem Parasitol; 2010 Jan; 169(1):12-9. PubMed ID: 19747949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural analysis and molecular docking of trypanocidal aryloxy-quinones in trypanothione and glutathione reductases: a comparison with biochemical data.
    Vera B; Vázquez K; Mascayano C; Tapia RA; Espinosa V; Soto-Delgado J; Salas CO; Paulino M
    J Biomol Struct Dyn; 2017 Jun; 35(8):1785-1803. PubMed ID: 27232454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel aryl β-aminocarbonyl derivatives as inhibitors of Trypanosoma cruzi trypanothione reductase: binding mode revised by docking and GRIND2-based 3D-QSAR procedures.
    de Paula da Silva CH; Bernardes LS; da Silva VB; Zani CL; Carvalho I
    J Biomol Struct Dyn; 2012; 29(6):702-16. PubMed ID: 22546000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and synthesis of potent substrate-based inhibitors of the Trypanosoma cruzi dihydroorotate dehydrogenase.
    Inaoka DK; Iida M; Hashimoto S; Tabuchi T; Kuranaga T; Balogun EO; Honma T; Tanaka A; Harada S; Nara T; Kita K; Inoue M
    Bioorg Med Chem; 2017 Feb; 25(4):1465-1470. PubMed ID: 28118956
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of quinoline derivatives as potential cysteine protease inhibitors.
    Andrade MM; Martins LC; Marques GV; Silva CA; Faria G; Caldas S; Dos Santos JS; Leclercq SY; Maltarollo VG; Ferreira RS; Oliveira RB
    Future Med Chem; 2020 Apr; 12(7):571-581. PubMed ID: 32116030
    [No Abstract]   [Full Text] [Related]  

  • 35. New therapeutic targets for drug design against Trypanosoma cruzi, advances and perspectives.
    Rivera G; Bocanegra-García V; Ordaz-Pichardo C; Nogueda-Torres B; Monge A
    Curr Med Chem; 2009; 16(25):3286-93. PubMed ID: 19548870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Inactivation of Trypanosoma cruzi trypanothione reductase by phenothiazine cationic free radicals].
    Gutierrez Correa J; Fairlamb AH; Stoppani AO
    Rev Argent Microbiol; 2001; 33(1):36-46. PubMed ID: 11407019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Widespread Anti-Protozoal Action of HIV Aspartic Peptidase Inhibitors: Focus on Plasmodium spp., Leishmania spp. and Trypanosoma cruzi.
    Santos AL; d'Avila-Levy CM; Kneipp LF; Sodré CL; Sangenito LS; Branquinha MH
    Curr Top Med Chem; 2017; 17(11):1303-1317. PubMed ID: 27784256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New spermine and spermidine derivatives as potent inhibitors of Trypanosoma cruzi trypanothione reductase.
    Bonnet B; Soullez D; Davioud-Charvet E; Landry V; Horvath D; Sergheraert C
    Bioorg Med Chem; 1997 Jul; 5(7):1249-56. PubMed ID: 9377084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relevance of Trypanothione Reductase Inhibitors on
    Mendonça AAS; Coelho CM; Veloso MP; Caldas IS; Gonçalves RV; Teixeira AL; de Miranda AS; Novaes RD
    Oxid Med Cell Longev; 2018; 2018():8676578. PubMed ID: 30473742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenyl substitution of furamidine markedly potentiates its anti-parasitic activity against Trypanosoma cruzi and Leishmania amazonensis.
    De Souza EM; Lansiaux A; Bailly C; Wilson WD; Hu Q; Boykin DW; Batista MM; Araújo-Jorge TC; Soeiro MN
    Biochem Pharmacol; 2004 Aug; 68(4):593-600. PubMed ID: 15276066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.