These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 26197870)
1. Finite-Element Modelling of the Response of the Gerbil Middle Ear to Sound. Maftoon N; Funnell WR; Daniel SJ; Decraemer WF J Assoc Res Otolaryngol; 2015 Oct; 16(5):547-67. PubMed ID: 26197870 [TBL] [Abstract][Full Text] [Related]
2. Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity. Maftoon N; Funnell WR; Daniel SJ; Decraemer WF J Assoc Res Otolaryngol; 2013 Aug; 14(4):467-81. PubMed ID: 23624883 [TBL] [Abstract][Full Text] [Related]
3. Low-frequency finite-element modeling of the gerbil middle ear. Elkhouri N; Liu H; Funnell WR J Assoc Res Otolaryngol; 2006 Dec; 7(4):399-411. PubMed ID: 17043944 [TBL] [Abstract][Full Text] [Related]
4. Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements. Teoh SW; Flandermeyer DT; Rosowski JJ Hear Res; 1997 Apr; 106(1-2):39-65. PubMed ID: 9112106 [TBL] [Abstract][Full Text] [Related]
5. Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Sweeps. Kose O; Funnell WRJ; Daniel SJ J Assoc Res Otolaryngol; 2022 Dec; 23(6):739-750. PubMed ID: 36100816 [TBL] [Abstract][Full Text] [Related]
6. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415 [TBL] [Abstract][Full Text] [Related]
7. Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Steps. Kose O; Funnell WRJ; Daniel SJ J Assoc Res Otolaryngol; 2020 Aug; 21(4):287-302. PubMed ID: 32783164 [TBL] [Abstract][Full Text] [Related]
8. Vibro-acoustic modelling of the outer and middle ear using the finite-element method. Prendergast PJ; Ferris P; Rice HJ; Blayney AW Audiol Neurootol; 1999; 4(3-4):185-91. PubMed ID: 10187928 [TBL] [Abstract][Full Text] [Related]
9. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis. Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416 [TBL] [Abstract][Full Text] [Related]
10. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique. Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934 [TBL] [Abstract][Full Text] [Related]
11. Effects of middle-ear static pressure on pars tensa and pars flaccida of gerbil ears. Lee CY; Rosowski JJ Hear Res; 2001 Mar; 153(1-2):146-63. PubMed ID: 11223305 [TBL] [Abstract][Full Text] [Related]
12. A single-ossicle ear: Acoustic response and mechanical properties measured in duck. Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104 [TBL] [Abstract][Full Text] [Related]
13. Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model. Yu YC; Wang TC; Shih TC Comput Methods Programs Biomed; 2022 Mar; 215():106619. PubMed ID: 35038652 [TBL] [Abstract][Full Text] [Related]
14. Effect of opening middle-ear cavity on vibrations of gerbil tympanic membrane. Maftoon N; Funnell WR; Daniel SJ; Decraemer WF J Assoc Res Otolaryngol; 2014 Jun; 15(3):319-34. PubMed ID: 24452323 [TBL] [Abstract][Full Text] [Related]
15. A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model. Xie P; Peng Y; Hu J; Yi S Proc Inst Mech Eng H; 2019 Aug; 233(8):784-792. PubMed ID: 31165672 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional vibration of the malleus and incus in the living gerbil. Decraemer WF; de La Rochefoucauld O; Funnell WR; Olson ES J Assoc Res Otolaryngol; 2014 Aug; 15(4):483-510. PubMed ID: 24691793 [TBL] [Abstract][Full Text] [Related]
17. Effects of tympanic membrane perforation on middle ear transmission in gerbil. Stomackin G; Kidd S; Jung TT; Martin GK; Dong W Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199 [TBL] [Abstract][Full Text] [Related]
18. Elastic characterization of the gerbil pars flaccida from in situ inflation experiments. Aernouts J; Dirckx JJ Biomech Model Mechanobiol; 2011 Oct; 10(5):727-41. PubMed ID: 21069415 [TBL] [Abstract][Full Text] [Related]
19. Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound conduction in the mouse. Samadi DS; Saunders JC; Crenshaw EB Hear Res; 2005 Jan; 199(1-2):11-21. PubMed ID: 15574296 [TBL] [Abstract][Full Text] [Related]
20. Relative importance and interactions of parameters of finite-element models of human middle ear. Ebrahimian A; Mohammadi H; Maftoon N J Acoust Soc Am; 2023 Aug; 154(2):619-634. PubMed ID: 37535428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]