These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 26198256)
41. Genetic and genomic dissection of maize root development and architecture. Hochholdinger F; Tuberosa R Curr Opin Plant Biol; 2009 Apr; 12(2):172-7. PubMed ID: 19157956 [TBL] [Abstract][Full Text] [Related]
42. RLF, a cytochrome b(5)-like heme/steroid binding domain protein, controls lateral root formation independently of ARF7/19-mediated auxin signaling in Arabidopsis thaliana. Ikeyama Y; Tasaka M; Fukaki H Plant J; 2010 Jun; 62(5):865-75. PubMed ID: 20230485 [TBL] [Abstract][Full Text] [Related]
43. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Fukaki H; Nakao Y; Okushima Y; Theologis A; Tasaka M Plant J; 2005 Nov; 44(3):382-95. PubMed ID: 16236149 [TBL] [Abstract][Full Text] [Related]
44. Expression analysis of Li Z; Li P; Zhang J Plant Signal Behav; 2019; 14(9):1632689. PubMed ID: 31208285 [TBL] [Abstract][Full Text] [Related]
45. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells. Alarcón MV; Lloret PG; Martín-Partido G; Salguero J J Plant Physiol; 2016 Mar; 192():105-10. PubMed ID: 26905196 [TBL] [Abstract][Full Text] [Related]
46. The Auxin Biosynthetic Shao A; Ma W; Zhao X; Hu M; He X; Teng W; Li H; Tong Y Plant Physiol; 2017 Aug; 174(4):2274-2288. PubMed ID: 28626005 [TBL] [Abstract][Full Text] [Related]
47. Differential TOR activation and cell proliferation in Li X; Cai W; Liu Y; Li H; Fu L; Liu Z; Xu L; Liu H; Xu T; Xiong Y Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2765-2770. PubMed ID: 28223530 [TBL] [Abstract][Full Text] [Related]
48. Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle. Ivanchenko MG; Coffeen WC; Lomax TL; Dubrovsky JG Plant J; 2006 May; 46(3):436-47. PubMed ID: 16623904 [TBL] [Abstract][Full Text] [Related]
49. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates. Contreras-Cornejo HA; Macías-Rodríguez L; Alfaro-Cuevas R; López-Bucio J Mol Plant Microbe Interact; 2014 Jun; 27(6):503-14. PubMed ID: 24502519 [TBL] [Abstract][Full Text] [Related]
50. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development. Ludwig Y; Zhang Y; Hochholdinger F PLoS One; 2013; 8(11):e78859. PubMed ID: 24223858 [TBL] [Abstract][Full Text] [Related]
51. Signalling Overlaps between Nitrate and Auxin in Regulation of The Root System Architecture: Insights from the Asim M; Ullah Z; Oluwaseun A; Wang Q; Liu H Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326090 [TBL] [Abstract][Full Text] [Related]
52. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Mounier E; Pervent M; Ljung K; Gojon A; Nacry P Plant Cell Environ; 2014 Jan; 37(1):162-74. PubMed ID: 23731054 [TBL] [Abstract][Full Text] [Related]
53. Root system architecture from coupling cell shape to auxin transport. Laskowski M; Grieneisen VA; Hofhuis H; Hove CA; Hogeweg P; Marée AF; Scheres B PLoS Biol; 2008 Dec; 6(12):e307. PubMed ID: 19090618 [TBL] [Abstract][Full Text] [Related]
54. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Atta R; Laurens L; Boucheron-Dubuisson E; Guivarc'h A; Carnero E; Giraudat-Pautot V; Rech P; Chriqui D Plant J; 2009 Feb; 57(4):626-44. PubMed ID: 18980654 [TBL] [Abstract][Full Text] [Related]
56. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991 [TBL] [Abstract][Full Text] [Related]
57. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. Karampelias M; Neyt P; De Groeve S; Aesaert S; Coussens G; Rolčík J; Bruno L; De Winne N; Van Minnebruggen A; Van Montagu M; Ponce MR; Micol JL; Friml J; De Jaeger G; Van Lijsebettens M Proc Natl Acad Sci U S A; 2016 Mar; 113(10):2768-73. PubMed ID: 26888284 [TBL] [Abstract][Full Text] [Related]
58. Genetic Control of Root System Development in Maize. Hochholdinger F; Yu P; Marcon C Trends Plant Sci; 2018 Jan; 23(1):79-88. PubMed ID: 29170008 [TBL] [Abstract][Full Text] [Related]
59. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types. Yu P; White PJ; Li C Plant Signal Behav; 2015; 10(10):e1013795. PubMed ID: 26443081 [TBL] [Abstract][Full Text] [Related]
60. Auxin efflux carrier ZmPIN1a modulates auxin reallocation involved in nitrate-mediated root formation. Wang Y; Xing J; Wan J; Yao Q; Zhang Y; Mi G; Chen L; Li Z; Zhang M BMC Plant Biol; 2023 Feb; 23(1):74. PubMed ID: 36737696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]