BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26198418)

  • 1. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.
    Bradu A; Kapinchev K; Barnes F; Podoleanu A
    J Biomed Opt; 2015 Jul; 20(7):76008. PubMed ID: 26198418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Master slave en-face OCT/SLO.
    Bradu A; Kapinchev K; Barnes F; Podoleanu A
    Biomed Opt Express; 2015 Sep; 6(9):3655-69. PubMed ID: 26417531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.
    Watanabe Y; Itagaki T
    J Biomed Opt; 2009; 14(6):060506. PubMed ID: 20059237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M; Srinivasan V; Fujimoto JG; Ko T; Schuman JS; Kowalczyk A; Duker JS
    Ophthalmology; 2005 Oct; 112(10):1734-46. PubMed ID: 16140383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.
    Cua M; Lee S; Miao D; Ju MJ; Mackenzie PJ; Jian Y; Sarunic MV
    J Biomed Opt; 2016 Feb; 21(2):26007. PubMed ID: 26882449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography.
    Bradu A; Podoleanu AG
    Biomed Opt Express; 2014 Apr; 5(4):1233-49. PubMed ID: 24761303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit.
    Van der Jeught S; Bradu A; Podoleanu AG
    J Biomed Opt; 2010; 15(3):030511. PubMed ID: 20614994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.
    Xu J; Wong K; Jian Y; Sarunic MV
    J Biomed Opt; 2014 Feb; 19(2):026001. PubMed ID: 24503636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional en-face OCT imaging of the retina.
    Rosen RB; Hathaway M; Rogers J; Pedro J; Garcia P; Laissue P; Dobre GM; Podoleanu AG
    Opt Express; 2009 Mar; 17(5):4112-33. PubMed ID: 19259250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gabor fusion master slave optical coherence tomography.
    Cernat R; Bradu A; Israelsen NM; Bang O; Rivet S; Keane PA; Heath DG; Rajendram R; Podoleanu A
    Biomed Opt Express; 2017 Feb; 8(2):813-827. PubMed ID: 28270987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.
    Jian Y; Zawadzki RJ; Sarunic MV
    J Biomed Opt; 2013 May; 18(5):56007. PubMed ID: 23644903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging.
    Sampson DM; Alonso-Caneiro D; Chew AL; Lamey T; McLaren T; De Roach J; Chen FK
    PLoS One; 2016; 11(12):e0168275. PubMed ID: 27959968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography.
    Podoleanu AG; Bradu A
    Opt Express; 2013 Aug; 21(16):19324-38. PubMed ID: 23938849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina.
    Sugita M; Pircher M; Zotter S; Baumann B; Saito K; Makihira T; Tomatsu N; Sato M; Hitzenberger CK
    J Biomed Opt; 2015 Jan; 20(1):016011. PubMed ID: 25585024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated layer segmentation of optical coherence tomography images.
    Lu S; Cheung CY; Liu J; Lim JH; Leung CK; Wong TY
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography of the human retina.
    Hee MR; Izatt JA; Swanson EA; Huang D; Schuman JS; Lin CP; Puliafito CA; Fujimoto JG
    Arch Ophthalmol; 1995 Mar; 113(3):325-32. PubMed ID: 7887846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Ko TH; Wojtkowski M; Carvalho M; Clermont A; Bursell SE; Song QH; Lem J; Duker JS; Schuman JS; Fujimoto JG
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5522-8. PubMed ID: 17122144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.