These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26198418)

  • 41. Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices.
    Terry L; Cassels N; Lu K; Acton JH; Margrain TH; North RV; Fergusson J; White N; Wood A
    PLoS One; 2016; 11(9):e0162001. PubMed ID: 27588683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent developments in optical coherence tomography for imaging the retina.
    van Velthoven ME; Faber DJ; Verbraak FD; van Leeuwen TG; de Smet MD
    Prog Retin Eye Res; 2007 Jan; 26(1):57-77. PubMed ID: 17158086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography.
    Shahidi M; Wang Z; Zelkha R
    Am J Ophthalmol; 2005 Jun; 139(6):1056-61. PubMed ID: 15953436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of phase-shifting techniques for in vivo full-range, high-speed Fourier-domain optical coherence tomography.
    Kim DY; Werner JS; Zawadzki RJ
    J Biomed Opt; 2010; 15(5):056011. PubMed ID: 21054105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J; Sugden K; Tomlins PH
    J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.
    Watanabe Y; Maeno S; Aoshima K; Hasegawa H; Koseki H
    Appl Opt; 2010 Sep; 49(25):4756-62. PubMed ID: 20820218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining SLO and OCT technology.
    Podoleanu AG
    Bull Soc Belge Ophtalmol; 2006; (302):133-51. PubMed ID: 17265795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical coherence tomography.
    Ripandelli G; Coppé AM; Capaldo A; Stirpe M
    Semin Ophthalmol; 1998 Dec; 13(4):199-202. PubMed ID: 9878670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of optical coherence tomography to automated contact lens metrology.
    Davidson BR; Barton JK
    J Biomed Opt; 2010; 15(1):016009. PubMed ID: 20210455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy.
    Podoleanu AG; Dobre GM; Cucu RG; Rosen R; Garcia P; Nieto J; Will D; Gentile R; Muldoon T; Walsh J; Yannuzzi LA; Fisher Y; Orlock D; Weitz R; Rogers JA; Dunne S; Boxer A
    J Biomed Opt; 2004; 9(1):86-93. PubMed ID: 14715059
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical coherence tomography of the retina and optic nerve - a review.
    Sakata LM; Deleon-Ortega J; Sakata V; Girkin CA
    Clin Exp Ophthalmol; 2009 Jan; 37(1):90-9. PubMed ID: 19338607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Novel Method for Assessing Lamina Cribrosa Structure Ex Vivo Using Anterior Segment Enhanced Depth Imaging Optical Coherence Tomography.
    Chien JL; Ghassibi MP; Mahadeshwar P; Li P; Liebmann JM; Ritch R; Milman T; Park SC
    J Glaucoma; 2017 Jul; 26(7):626-632. PubMed ID: 28486274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fourier Domain Optical Coherence Tomography integrated into a slit lamp; a novel technique combining anterior and posterior segment OCT.
    Stehouwer M; Verbraak FD; de Vries H; Kok PH; van Leeuwen TG
    Eye (Lond); 2010 Jun; 24(6):980-4. PubMed ID: 19911024
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser.
    Klein T; Wieser W; Eigenwillig CM; Biedermann BR; Huber R
    Opt Express; 2011 Feb; 19(4):3044-62. PubMed ID: 21369128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High resolution Fourier-domain optical coherence tomography of retinal angiomatous proliferation.
    Truong SN; Alam S; Zawadzki RJ; Choi SS; Telander DG; Park SS; Werner JS; Morse LS
    Retina; 2007 Sep; 27(7):915-25. PubMed ID: 17891017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of Thermal Effects of Photocoagulation on Retinal Tissue Using Fine-Motion-Sensitive Dynamic Optical Coherence Tomography.
    Kurokawa K; Makita S; Yasuno Y
    PLoS One; 2016; 11(6):e0156761. PubMed ID: 27271952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images.
    Duan J; Tench C; Gottlob I; Proudlock F; Bai L
    Phys Med Biol; 2015 Nov; 60(22):8901-22. PubMed ID: 26553577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.
    Yazdanpanah A; Hamarneh G; Smith BR; Sarunic MV
    IEEE Trans Med Imaging; 2011 Feb; 30(2):484-96. PubMed ID: 20952331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography.
    Nassif N; Cense B; Park BH; Yun SH; Chen TC; Bouma BE; Tearney GJ; de Boer JF
    Opt Lett; 2004 Mar; 29(5):480-2. PubMed ID: 15005199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.