These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26198418)

  • 61. Clinical applications of spectral domain optical coherence tomography in retinal diseases.
    Murthy RK; Haji S; Sambhav K; Grover S; Chalam KV
    Biomed J; 2016 Apr; 39(2):107-20. PubMed ID: 27372166
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images.
    Zhang X; Li L; Zhu F; Hou W; Chen X
    J Biomed Opt; 2014 Jun; 19(6):066005. PubMed ID: 24919448
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images.
    Sonoda S; Sakamoto T; Kakiuchi N; Shiihara H; Sakoguchi T; Tomita M; Yamashita T; Uchino E
    Jpn J Ophthalmol; 2018 Mar; 62(2):179-185. PubMed ID: 29270813
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fourier-domain optical coherence tomography evaluation of retinal and optic nerve head neovascularisation in proliferative diabetic retinopathy.
    Muqit MM; Stanga PE
    Br J Ophthalmol; 2014 Jan; 98(1):65-72. PubMed ID: 24158844
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Clinical relevance of foveal location on retinal nerve fiber layer thickness using the new FoDi software in spectralis optical coherence tomography.
    Valverde-Megías A; Martinez-de-la-Casa JM; Serrador-García M; Larrosa JM; García-Feijoó J
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5771-6. PubMed ID: 23908184
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Wojtkowski M; Witkin AJ; Duker JS; Ko TH; Carvalho M; Schuman JS; Kowalczyk A; Fujimoto JG
    Ophthalmology; 2006 Nov; 113(11):2054.e1-14. PubMed ID: 17074565
    [TBL] [Abstract][Full Text] [Related]  

  • 69. REAL-TIME FULL-DEPTH VISUALIZATION OF POSTERIOR OCULAR STRUCTURES: Comparison Between Full-Depth Imaging Spectral Domain Optical Coherence Tomography and Swept-Source Optical Coherence Tomography.
    Barteselli G; Bartsch DU; Weinreb RN; Camacho N; Nezgoda JT; Marvasti AH; Freeman WR
    Retina; 2016 Jun; 36(6):1153-61. PubMed ID: 26562563
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In-vivo Fourier domain optical coherence tomography as a new tool for investigation of vasodynamics in the mouse model.
    Meissner S; Müller G; Walther J; Morawietz H; Koch E
    J Biomed Opt; 2009; 14(3):034027. PubMed ID: 19566320
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Speckle reduction in optical coherence tomography imaging by affine-motion image registration.
    Alonso-Caneiro D; Read SA; Collins MJ
    J Biomed Opt; 2011 Nov; 16(11):116027. PubMed ID: 22112132
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Master/slave interferometry - ideal tool for coherence revival swept source optical coherence tomography.
    Bradu A; Rivet S; Podoleanu A
    Biomed Opt Express; 2016 Jul; 7(7):2453-68. PubMed ID: 27446682
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adaptive-optics optical coherence tomography processing using a graphics processing unit.
    Shafer BA; Kriske JE; Kocaoglu OP; Turner TL; Liu Z; Lee JJ; Miller DT
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3877-80. PubMed ID: 25570838
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 3D OCT eye movement correction based on particle filtering.
    Xu J; Ishikawa H; Wollstein G; Schuman JS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():53-6. PubMed ID: 21095880
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations.
    McLellan GJ; Rasmussen CA
    Vet Ophthalmol; 2012 Sep; 15 Suppl 2(Suppl 2):13-28. PubMed ID: 22805095
    [TBL] [Abstract][Full Text] [Related]  

  • 76. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.
    Xu D; Huang Y; Kang JU
    Opt Express; 2014 Jun; 22(12):14871-84. PubMed ID: 24977582
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In vivo full-field en face correlation mapping optical coherence tomography.
    McNamara PM; Subhash HM; Leahy MJ
    J Biomed Opt; 2013 Dec; 18(12):126008. PubMed ID: 24343439
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rapid radial optical coherence tomography image acquisition.
    Lebed E; Lee S; Sarunic MV; Beg MF
    J Biomed Opt; 2013 Mar; 18(3):036004. PubMed ID: 23455962
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography.
    Bogunovic H; Sonka M; Kwon YH; Kemp P; Abramoff MD; Wu X
    IEEE Trans Med Imaging; 2014 Dec; 33(12):2242-53. PubMed ID: 25020067
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation.
    Fang L; Li S; McNabb RP; Nie Q; Kuo AN; Toth CA; Izatt JA; Farsiu S
    IEEE Trans Med Imaging; 2013 Nov; 32(11):2034-49. PubMed ID: 23846467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.