These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26198456)

  • 1. Understanding the basis of I50V-induced affinity decrease in HIV-1 protease via molecular dynamics simulations using polarized force field.
    Duan R; Lazim R; Zhang D
    J Comput Chem; 2015 Sep; 36(25):1885-92. PubMed ID: 26198456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations.
    Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG
    Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
    Ntemgwa M; Brenner BG; Oliveira M; Moisi D; Wainberg MA
    Antimicrob Agents Chemother; 2007 Feb; 51(2):604-10. PubMed ID: 17116674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir.
    Markland W; Rao BG; Parsons JD; Black J; Zuchowski L; Tisdale M; Tung R
    J Virol; 2000 Aug; 74(16):7636-41. PubMed ID: 10906218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Studies of a Mechanism for Binding and Drug Resistance in the Wild Type and Four Mutations of HIV-1 Protease with a GRL-0519 Inhibitor.
    Hu G; Ma A; Dou X; Zhao L; Wang J
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotypic and phenotypic evolution of HIV type-1 protease during in vitro sequential or concomitant combination of atazanavir and amprenavir.
    Cunyat F; Ruiz L; Marfil S; Puig T; Bofill M; Blanco J; Clotet B; Cabrera C
    Antivir Ther; 2010; 15(3):431-6. PubMed ID: 20516562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human immunodeficiency virus type 1 hypersusceptibility to amprenavir in vitro can be associated with virus load response to treatment in vivo.
    Zachary KC; Hanna GJ; D'Aquila RT
    Clin Infect Dis; 2001 Dec; 33(12):2075-7. PubMed ID: 11700580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amprenavir resistance imparted by the I50V mutation in HIV-1 protease can be suppressed by the N88S mutation.
    Lam E; Parkin NT
    Clin Infect Dis; 2003 Nov; 37(9):1273-4. PubMed ID: 14557976
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies.
    Meher BR; Wang Y
    J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: free energy calculation and molecular dynamic simulation.
    Chen J; Zhang S; Liu X; Zhang Q
    J Mol Model; 2010 Mar; 16(3):459-68. PubMed ID: 19629548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease.
    Kar P; Lipowsky R; Knecht V
    J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and thermodynamic basis of amprenavir/darunavir and atazanavir resistance in HIV-1 protease with mutations at residue 50.
    Mittal S; Bandaranayake RM; King NM; Prabu-Jeyabalan M; Nalam MN; Nalivaika EA; Yilmaz NK; Schiffer CA
    J Virol; 2013 Apr; 87(8):4176-84. PubMed ID: 23365446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent Prediction of Mutation Effect on Drug Binding in HIV-1 Protease Using Alchemical Calculations.
    Bastys T; Gapsys V; Doncheva NT; Kaiser R; de Groot BL; Kalinina OV
    J Chem Theory Comput; 2018 Jul; 14(7):3397-3408. PubMed ID: 29847122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV protease mutations associated with amprenavir resistance during salvage therapy: importance of I54M.
    Murphy MD; Marousek GI; Chou S
    J Clin Virol; 2004 May; 30(1):62-7. PubMed ID: 15072756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization of human immunodeficiency virus type-1 protease-resistant variants.
    Pazhanisamy S; Stuver CM; Cullinan AB; Margolin N; Rao BG; Livingston DJ
    J Biol Chem; 1996 Jul; 271(30):17979-85. PubMed ID: 8663409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
    Shen CH; Wang YF; Kovalevsky AY; Harrison RW; Weber IT
    FEBS J; 2010 Sep; 277(18):3699-714. PubMed ID: 20695887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A; Jamal S; Goyal S; Jain R; Wahi D; Grover A
    BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.