BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26198619)

  • 1. Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release.
    Mazutis L; Vasiliauskas R; Weitz DA
    Macromol Biosci; 2015 Dec; 15(12):1641-6. PubMed ID: 26198619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trivalent ion cross-linked pH sensitive alginate-methyl cellulose blend hydrogel beads from aqueous template.
    Banerjee S; Singh S; Bhattacharya SS; Chattopadhyay P
    Int J Biol Macromol; 2013 Jun; 57():297-307. PubMed ID: 23537798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.
    Fang A; Cathala B
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):81-6. PubMed ID: 20833004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein.
    Zhao J; Zhao X; Guo B; Ma PX
    Biomacromolecules; 2014 Sep; 15(9):3246-52. PubMed ID: 25102223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic synthesis of tail-shaped alginate microparticles using slow sedimentation.
    Lin YS; Yang CH; Hsu YY; Hsieh CL
    Electrophoresis; 2013 Feb; 34(3):425-31. PubMed ID: 23161405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable generation and encapsulation of alginate fibers using droplet-based microfluidics.
    Martino C; Statzer C; Vigolo D; deMello AJ
    Lab Chip; 2016 Jan; 16(1):59-64. PubMed ID: 26556398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.
    Utech S; Prodanovic R; Mao AS; Ostafe R; Mooney DJ; Weitz DA
    Adv Healthc Mater; 2015 Aug; 4(11):1628-33. PubMed ID: 26039892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate-Chitosan Hydrogels Provide a Sustained Gradient of Sphingosine-1-Phosphate for Therapeutic Angiogenesis.
    Williams PA; Campbell KT; Gharaviram H; Madrigal JL; Silva EA
    Ann Biomed Eng; 2017 Apr; 45(4):1003-1014. PubMed ID: 27904998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces.
    Betz JF; Cheng Y; Tsao CY; Zargar A; Wu HC; Luo X; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2013 May; 13(10):1854-8. PubMed ID: 23559159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices.
    Nokhodchi A; Tailor A
    Farmaco; 2004 Dec; 59(12):999-1004. PubMed ID: 15598436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics, biocompatibility and bioavailability of a controlled release monoclonal antibody formulation.
    Schweizer D; Vostiar I; Heier A; Serno T; Schoenhammer K; Jahn M; Jones S; Piequet A; Beerli C; Gram H; Goepferich A
    J Control Release; 2013 Dec; 172(3):975-82. PubMed ID: 24140353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions.
    Liu L; Wu F; Ju XJ; Xie R; Wang W; Niu CH; Chu LY
    J Colloid Interface Sci; 2013 Aug; 404():85-90. PubMed ID: 23711658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse alginate microcapsules with oil core generated from a microfluidic device.
    Ren PW; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic one-step synthesis of alginate microspheres immobilized with antibodies.
    Chen W; Kim JH; Zhang D; Lee KH; Cangelosi GA; Soelberg SD; Furlong CE; Chung JH; Shen AQ
    J R Soc Interface; 2013 Nov; 10(88):20130566. PubMed ID: 23966617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks.
    Martins E; Poncelet D; Rodrigues RC; Renard D
    J Microencapsul; 2017 Dec; 34(8):754-771. PubMed ID: 29161939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.