BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 26198708)

  • 1. 'Micro-managers' of hepatic lipid metabolism and NAFLD.
    Liu W; Cao H; Yan J; Huang R; Ying H
    Wiley Interdiscip Rev RNA; 2015; 6(5):581-93. PubMed ID: 26198708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.
    Lin Y; Ding D; Huang Q; Liu Q; Lu H; Lu Y; Chi Y; Sun X; Ye G; Zhu H; Wei J; Dong S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):869-882. PubMed ID: 28483554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1.
    Zhang M; Sun W; Zhou M; Tang Y
    Sci Rep; 2017 Nov; 7(1):14493. PubMed ID: 29101357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones.
    Geisler CE; Renquist BJ
    J Endocrinol; 2017 Jul; 234(1):R1-R21. PubMed ID: 28428362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease.
    Fang Z; Dou G; Wang L
    Int J Biol Sci; 2021; 17(7):1851-1863. PubMed ID: 33994867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD.
    Latorre J; Moreno-Navarrete JM; Mercader JM; Sabater M; Rovira Ò; Gironès J; Ricart W; Fernández-Real JM; Ortega FJ
    Int J Obes (Lond); 2017 Apr; 41(4):620-630. PubMed ID: 28119530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular regulation of miRNAs and potential biomarkers in the progression of hepatic steatosis to NASH.
    Wang Y; Liu Z; Zou W; Hong H; Fang H; Tong W
    Biomark Med; 2015; 9(11):1189-200. PubMed ID: 26506944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiR-150 deficiency ameliorated hepatosteatosis and insulin resistance in nonalcoholic fatty liver disease via targeting CASP8 and FADD-like apoptosis regulator.
    Zhuge B; Li G
    Biochem Biophys Res Commun; 2017 Dec; 494(3-4):687-692. PubMed ID: 29107687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs as biomarkers and regulators of nonalcoholic fatty liver disease.
    Liu XL; Cao HX; Fan JG
    J Dig Dis; 2016 Nov; 17(11):708-715. PubMed ID: 27628945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease.
    Torres JL; Novo-Veleiro I; Manzanedo L; Alvela-Suárez L; Macías R; Laso FJ; Marcos M
    World J Gastroenterol; 2018 Sep; 24(36):4104-4118. PubMed ID: 30271077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis.
    Leti F; Malenica I; Doshi M; Courtright A; Van Keuren-Jensen K; Legendre C; Still CD; Gerhard GS; DiStefano JK
    Transl Res; 2015 Sep; 166(3):304-14. PubMed ID: 26001595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis.
    Bellanti F; Villani R; Facciorusso A; Vendemiale G; Serviddio G
    Free Radic Biol Med; 2017 Oct; 111():173-185. PubMed ID: 28109892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hepatic Steatosis as a Marker of Metabolic Dysfunction.
    Fabbrini E; Magkos F
    Nutrients; 2015 Jun; 7(6):4995-5019. PubMed ID: 26102213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH.
    Amrutkar M; Cansby E; Nuñez-Durán E; Pirazzi C; Ståhlman M; Stenfeldt E; Smith U; Borén J; Mahlapuu M
    FASEB J; 2015 Apr; 29(4):1564-76. PubMed ID: 25609431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of farnesoid X receptor in hepatic steatosis in nonalcoholic fatty liver disease.
    Xi Y; Li H
    Biomed Pharmacother; 2020 Jan; 121():109609. PubMed ID: 31731192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease.
    Auguet T; Aragonès G; Berlanga A; Guiu-Jurado E; Martí A; Martínez S; Sabench F; Hernández M; Aguilar C; Sirvent JJ; Del Castillo D; Richart C
    Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27669236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innate immune regulatory networks in hepatic lipid metabolism.
    Bai L; Li H
    J Mol Med (Berl); 2019 May; 97(5):593-604. PubMed ID: 30891617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1.
    Zhang M; Tang Y; Tang E; Lu W
    Biochem Biophys Res Commun; 2020 Apr; 524(3):716-722. PubMed ID: 32035613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance.
    Qiu Y; Sui X; Zhan Y; Xu C; Li X; Ning Y; Zhi X; Yin L
    Biochim Biophys Acta Mol Basis Dis; 2017 Apr; 1863(4):978-990. PubMed ID: 28153708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-26a Potentially Contributes to the Regulation of Fatty Acid and Sterol Metabolism In Vitro Human HepG2 Cell Model of Nonalcoholic Fatty Liver Disease.
    Ali O; Darwish HA; Eldeib KM; Abdel Azim SA
    Oxid Med Cell Longev; 2018; 2018():8515343. PubMed ID: 30402207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.