These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26199026)

  • 1. A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction.
    Li C; Wang T; Hu L; Zhang L; Du H; Zhao L; Wang L; Tang P
    Proc Inst Mech Eng H; 2015 Sep; 229(9):629-37. PubMed ID: 26199026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A removable hybrid robot system for long bone fracture reduction.
    Wang T; Li C; Hu L; Tang P; Zhang L; Du H; Luan S; Wang L; Tan Y; Peng C
    Biomed Mater Eng; 2014; 24(1):501-9. PubMed ID: 24211933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development on a magnetic anchoring robot system based on visual servo control for laparoendoscopic single-site surgery.
    Feng H; Lu Y; Chen D; Ma T; Fu Y
    Int J Med Robot; 2018 Aug; 14(4):e1904. PubMed ID: 29974669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-musculoskeletal dynamic biomechanical model in robot-assisted diaphyseal fracture reduction.
    Li C; Wang T; Hu L; Zhang L; Zhao Y; Du H; Wang L; Tang P
    Biomed Mater Eng; 2015; 26 Suppl 1():S365-74. PubMed ID: 26406025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel 3D hexapod computer-assisted orthopaedic surgery system for closed diaphyseal fracture reduction.
    Tang P; Hu L; Du H; Gong M; Zhang L
    Int J Med Robot; 2012 Mar; 8(1):17-24. PubMed ID: 22081502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: an experimental study on human cadaver femora.
    Oszwald M; Westphal R; Bredow J; Calafi A; Hufner T; Wahl F; Krettek C; Gosling T
    J Orthop Res; 2010 Sep; 28(9):1240-4. PubMed ID: 20187167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel optimal coordinated control strategy for the updated robot system for single port surgery.
    Bai W; Cao Q; Leng C; Cao Y; Fujie MG; Pan T
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 28758326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hands-on robot-assisted fracture reduction system guided by a linear guidance constraints controller using a pre-operatively planned goal pose.
    Kim WY; Ko SY
    Int J Med Robot; 2019 Apr; 15(2):e1967. PubMed ID: 30346113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control design and implementation of a novel master-slave surgery robot system, MicroHand A.
    Sang H; Wang S; Li J; He C; Zhang L; Wang X
    Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a multi-arm concentric-tube robot system for transnasal surgery.
    Wang J; Yang X; Li P; Song S; Liu L; Meng MQ
    Med Biol Eng Comput; 2020 Mar; 58(3):497-508. PubMed ID: 31900817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced position-force tracking of time-delayed teleoperation for robotic-assisted surgery.
    Guo J; Liu C; Poignet P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4894-7. PubMed ID: 26737389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A knowledge-based computer-aided system for closed diaphyseal fracture reduction.
    Koo TK; Mak AF
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):884-93. PubMed ID: 17590249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided parachute guiding system for closed reduction of diaphyseal fractures.
    Du D; Liu Z; Omori S; Kurita M; Tomita T; Sugamoto K; Yoshikawa H; Murase T
    Int J Med Robot; 2014 Sep; 10(3):325-31. PubMed ID: 24030893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A surgical telemanipulator for femur shaft fracture reduction.
    Westphal R; Winkelbach S; Gösling T; Hüfner T; Faulstich J; Martin P; Krettek C; Wahl FM
    Int J Med Robot; 2006 Sep; 2(3):238-50. PubMed ID: 17520638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a medical robot system for minimally invasive surgery.
    Feng M; Fu Y; Pan B; Liu C
    Int J Med Robot; 2012 Mar; 8(1):85-96. PubMed ID: 21990214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect visual guided fracture reduction robot based on external markers.
    Fu Z; Sun H; Dong X; Chen J; Rong H; Guo Y; Lin S
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 32881221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Filtering Approach for Image-Guided Surgery With a Highly Articulated Surgical Snake Robot.
    Tully S; Choset H
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):392-402. PubMed ID: 26241966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated control of bone cutting for a CT-free navigation robotic system in total knee arthroplasty.
    Yen PL; Chu YJ; Hsu SW; Wang JH; Hung SS
    Int J Med Robot; 2014 Jun; 10(2):180-6. PubMed ID: 23955848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-patient registration for optical tracker-free robotic fracture reduction surgery.
    Ha HG; Han G; Lee S; Nam K; Joung S; Park I; Hong J
    Comput Methods Programs Biomed; 2023 Jan; 228():107239. PubMed ID: 36410266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.