These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2619935)

  • 1. Variance of writhe for wormlike DNA rings with excluded volume.
    Klenin KV; Vologodskii AV; Anshelevich VV; Klishko VYu ; Dykhne AM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1989 Feb; 6(4):707-14. PubMed ID: 2619935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of excluded volume on topological properties of circular DNA.
    Klenin KV; Vologodskii AV; Anshelevich VV; Dykhne AM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1988 Jun; 5(6):1173-85. PubMed ID: 3271506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional and bending rigidity of the double helix from data on small DNA rings.
    Frank-Kamenetskii MD; Lukashin AV; Anshelevich VV; Vologodskii AV
    J Biomol Struct Dyn; 1985 Feb; 2(5):1005-12. PubMed ID: 3916932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models.
    Liu Z; Chan HS
    J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo analysis of the conformation of DNA catenanes.
    Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1993 Aug; 232(4):1130-40. PubMed ID: 8371271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation.
    Rybenkov VV; Vologodskii AV; Cozzarelli NR
    J Mol Biol; 1997 Mar; 267(2):312-23. PubMed ID: 9096228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational and thermodynamic properties of supercoiled DNA.
    Vologodskii AV; Levene SD; Klenin KV; Frank-Kamenetskii M; Cozzarelli NR
    J Mol Biol; 1992 Oct; 227(4):1224-43. PubMed ID: 1433295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational response of supercoiled DNA to confinement in a nanochannel.
    Lim W; Ng SY; Lee C; Feng YP; van der Maarel JR
    J Chem Phys; 2008 Oct; 129(16):165102. PubMed ID: 19045317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical mechanics of DNA topoisomers. The helical worm-like chain.
    Shimada J; Yamakawa H
    J Mol Biol; 1985 Jul; 184(2):319-29. PubMed ID: 4032481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brownian dynamics simulation of the diffusion of rods and wormlike chains in a gel modeled as a cubic lattice: application to DNA.
    Pei H; Allison S; Haynes BM; Augustin D
    J Phys Chem B; 2009 Mar; 113(9):2564-71. PubMed ID: 18761431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological distributions and the torsional rigidity of DNA. A Monte Carlo study of DNA circles.
    Levene SD; Crothers DM
    J Mol Biol; 1986 May; 189(1):73-83. PubMed ID: 3783681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of supercoiling free energies for unknotted and trefoil knotted DNAs.
    Gebe JA; Allison SA; Clendenning JB; Schurr JM
    Biophys J; 1995 Feb; 68(2):619-33. PubMed ID: 7696514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of polyethylene glycol on the supercoiling free energy of DNA.
    Naimushin AN; Quach N; Fujimoto BS; Schurr JM
    Biopolymers; 2001 Feb; 58(2):204-17. PubMed ID: 11093119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic pressure of DNA solutions and effective diameter of the double helix.
    Yarmola EG; Zarudnaya MI; Lazurkin YuS
    J Biomol Struct Dyn; 1985 Feb; 2(5):981-93. PubMed ID: 3916939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of polyelectrolyte theory to the study of the B-Z transition in DNA (1).
    Frank-Kamenetskii MD; Lukashin AV; Anshelevich VV
    J Biomol Struct Dyn; 1985 Aug; 3(1):35-42. PubMed ID: 3917016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of DNA supercoiling.
    Klenin KV; Vologodskii AV; Anshelevich VV; Dykhne AM; Frank-Kamenetskii MD
    J Mol Biol; 1991 Feb; 217(3):413-9. PubMed ID: 1994032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial translational motions of base pairs in DNA molecules: application of the extended matrix generator method.
    Marky NL; Olson WK
    Biopolymers; 1994 Jan; 34(1):121-42. PubMed ID: 8110965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical mechanics of supercoils and the torsional stiffness of the DNA double helix.
    Vologodskii AV; Anshelevich VV; Lukashin AV; Frank-Kamenetskii MD
    Nature; 1979 Jul; 280(5720):294-8. PubMed ID: 460401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling.
    Horowitz DS; Wang JC
    J Mol Biol; 1984 Feb; 173(1):75-91. PubMed ID: 6321743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric dichroism and bending amplitudes of DNA fragments according to a simple orientation function for weakly bent rods.
    Porschke D
    Biopolymers; 1989 Aug; 28(8):1383-96. PubMed ID: 2752096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.