BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26200115)

  • 1. Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci.
    Sørensen MV; Dal Zotto M; Rho HS; Herranz M; Sánchez N; Pardos F; Yamasaki H
    PLoS One; 2015; 10(7):e0133440. PubMed ID: 26200115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular phylogeny of kinorhynchs.
    Yamasaki H; Hiruta SF; Kajihara H
    Mol Phylogenet Evol; 2013 May; 67(2):303-10. PubMed ID: 23454469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenomic analyses of mud dragons (Kinorhyncha).
    Herranz M; Stiller J; Worsaae K; Sørensen MV
    Mol Phylogenet Evol; 2022 Mar; 168():107375. PubMed ID: 34952205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin.
    Mallatt JM; Garey JR; Shultz JW
    Mol Phylogenet Evol; 2004 Apr; 31(1):178-91. PubMed ID: 15019618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.
    Whiting MF; Carpenter JC; Wheeler QD; Wheeler WC
    Syst Biol; 1997 Mar; 46(1):1-68. PubMed ID: 11975347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.
    Mallatt J; Giribet G
    Mol Phylogenet Evol; 2006 Sep; 40(3):772-94. PubMed ID: 16781168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of sipunculan worms: A combined analysis of four gene regions and morphology.
    Schulze A; Cutler EB; Giribet G
    Mol Phylogenet Evol; 2007 Jan; 42(1):171-92. PubMed ID: 16919974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterisation of acanthocephalans from Australian marine teleosts: proposal of a new family, synonymy of another and transfer of taxa between orders.
    Huston DC; Cribb TH; Smales LR
    Syst Parasitol; 2020 Feb; 97(1):1-23. PubMed ID: 31912420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.
    Subbotin SA; Ragsdale EJ; Mullens T; Roberts PA; Mundo-Ocampo M; Baldwin JG
    Mol Phylogenet Evol; 2008 Aug; 48(2):491-505. PubMed ID: 18514550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.
    Hedin M; Bond JE
    Mol Phylogenet Evol; 2006 Nov; 41(2):454-71. PubMed ID: 16815045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of the beetle supertribe Trechitae (Coleoptera: Carabidae): Unexpected clades, isolated lineages, and morphological convergence.
    Maddison DR; Kanda K; Boyd OF; Faille A; Porch N; Erwin TL; Roig-Juñent S
    Mol Phylogenet Evol; 2019 Mar; 132():151-176. PubMed ID: 30468941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evidence for the retention of the Thaumatopsyllidae in the order Cyclopoida (Copepoda) and establishment of four suborders and two families within the Cyclopoida.
    Khodami S; Mercado-Salas NF; Tang D; Martinez Arbizu P
    Mol Phylogenet Evol; 2019 Sep; 138():43-52. PubMed ID: 31125659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects.
    Jenner RA; Ní Dhubhghaill C; Ferla MP; Wills MA
    BMC Evol Biol; 2009 Jan; 9():21. PubMed ID: 19173741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.
    Kuntner M; Arnedo MA; Trontelj P; Lokovšek T; Agnarsson I
    Mol Phylogenet Evol; 2013 Dec; 69(3):961-79. PubMed ID: 23811436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is the mega-diverse genus Ocyptamus (Diptera, Syrphidae) monophyletic? Evidence from molecular characters including the secondary structure of 28S rRNA.
    Mengual X; Ståhls G; Rojo S
    Mol Phylogenet Evol; 2012 Jan; 62(1):191-205. PubMed ID: 21985963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic relationships of basal hexapods reconstructed from nearly complete 18S and 28S rRNA gene sequences.
    Gao Y; Bu Y; Luan YX
    Zoolog Sci; 2008 Nov; 25(11):1139-45. PubMed ID: 19267625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny of Bembidion and related ground beetles (Coleoptera: Carabidae: Trechinae: Bembidiini: Bembidiina).
    Maddison DR
    Mol Phylogenet Evol; 2012 Jun; 63(3):533-76. PubMed ID: 22421212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two new species of Dracoderes (Kinorhyncha: Dracoderidae) from the Ryukyu Islands, Japan, with a molecular phylogeny of the genus.
    Yamasaki H
    Zootaxa; 2015 Jun; 3980(3):359-78. PubMed ID: 26249958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S).
    Rix MG; Harvey MS; Roberts JD
    Mol Phylogenet Evol; 2008 Mar; 46(3):1031-48. PubMed ID: 18162409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genus level molecular phylogeny of Aegisthidae Gisbrecht, 1893 (Copepoda: Harpacticoida) reveals morphological adaptations to deep-sea and plagic habitats.
    Khodami S; Mercado-Salas NF; Martìnez Arbizu P
    BMC Evol Biol; 2020 Mar; 20(1):36. PubMed ID: 32171237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.