These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26200136)

  • 61. Microelectrophoresis in a laser trap: a platform for measuring electrokinetic interactions and flow properties within microstructures.
    Kahl V; Gansen A; Galneder R; Rädler JO
    Rev Sci Instrum; 2009 Jul; 80(7):073704. PubMed ID: 19655953
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inference of DNA sequences from mechanical unzipping: an ideal-case study.
    Baldazzi V; Cocco S; Marinari E; Monasson R
    Phys Rev Lett; 2006 Mar; 96(12):128102. PubMed ID: 16605962
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parallel optical readout of cantilever arrays in dynamic mode.
    Koelmans WW; van Honschoten J; de Vries J; Vettiger P; Abelmann L; Elwenspoek MC
    Nanotechnology; 2010 Oct; 21(39):395503. PubMed ID: 20820095
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Single molecule elasticity measurements: a biophysical approach to bacterial nucleoid organization.
    Amit R; Oppenheim AB; Stavans J
    Biophys J; 2004 Aug; 87(2):1392-3. PubMed ID: 15298941
    [No Abstract]   [Full Text] [Related]  

  • 66. Stretching DNA with optical tweezers.
    Wang MD; Yin H; Landick R; Gelles J; Block SM
    Biophys J; 1997 Mar; 72(3):1335-46. PubMed ID: 9138579
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Entropic cages for trapping DNA near a nanopore.
    Liu X; Mihovilovic Skanata M; Stein D
    Nat Commun; 2015 Feb; 6():6222. PubMed ID: 25648853
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dual-trap optical tweezers with real-time force clamp control.
    Wallin AE; Ojala H; Ziedaite G; Hæggström E
    Rev Sci Instrum; 2011 Aug; 82(8):083102. PubMed ID: 21895228
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The motion of a single molecule, the lambda-receptor, in the bacterial outer membrane.
    Oddershede L; Dreyer JK; Grego S; Brown S; Berg-Sørensen K
    Biophys J; 2002 Dec; 83(6):3152-61. PubMed ID: 12496085
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Probing the mechanical unzipping of DNA.
    Voulgarakis NK; Redondo A; Bishop AR; Rasmussen KØ
    Phys Rev Lett; 2006 Jun; 96(24):248101. PubMed ID: 16907282
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DNA-templated magnetic nanowires with different compositions: fabrication and analysis.
    Kinsella JM; Ivanisevic A
    Langmuir; 2007 Mar; 23(7):3886-90. PubMed ID: 17316030
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Force determination in lateral magnetic tweezers combined with TIRF microscopy.
    Madariaga-Marcos J; Hormeño S; Pastrana CL; Fisher GLM; Dillingham MS; Moreno-Herrero F
    Nanoscale; 2018 Mar; 10(9):4579-4590. PubMed ID: 29461549
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Magnetic tweezers force calibration for molecules that exhibit conformational switching.
    Jacobson DR; Saleh OA
    Rev Sci Instrum; 2016 Sep; 87(9):094302. PubMed ID: 27782545
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Magnetic forces and DNA mechanics in multiplexed magnetic tweezers.
    De Vlaminck I; Henighan T; van Loenhout MT; Burnham DR; Dekker C
    PLoS One; 2012; 7(8):e41432. PubMed ID: 22870220
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field.
    Klaue D; Seidel R
    Phys Rev Lett; 2009 Jan; 102(2):028302. PubMed ID: 19257322
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanoparticle-mediated nonfluorescent bonding of microspheres to atomic force microscope cantilevers and imaging fluorescence from bonded cantilevers with single molecule sensitivity.
    Sivasankar S; Chu S
    Nano Lett; 2009 May; 9(5):2120-4. PubMed ID: 19435383
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Simple calibration of TIR field depth using the supercoiling response of DNA.
    Duboc C; Graves ET; Strick TR
    Methods; 2016 Aug; 105():56-61. PubMed ID: 27038746
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Parallel High Throughput Single Molecule Kinetic Assay for Site-Specific DNA Cleavage.
    Matozel EK; Dale N; Price AC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32449740
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nanoconfinement greatly speeds up the nucleation and the annealing in single-DNA collapse.
    Dai L; Jones JJ; Klotz AR; Levy S; Doyle PS
    Soft Matter; 2017 Sep; 13(37):6363-6371. PubMed ID: 28868564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.