BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 26200341)

  • 1. Lanosterol reverses protein aggregation in cataracts.
    Zhao L; Chen XJ; Zhu J; Xi YB; Yang X; Hu LD; Ouyang H; Patel SH; Jin X; Lin D; Wu F; Flagg K; Cai H; Li G; Cao G; Lin Y; Chen D; Wen C; Chung C; Wang Y; Qiu A; Yeh E; Wang W; Hu X; Grob S; Abagyan R; Su Z; Tjondro HC; Zhao XJ; Luo H; Hou R; Jefferson J; Perry P; Gao W; Kozak I; Granet D; Li Y; Sun X; Wang J; Zhang L; Liu Y; Yan YB; Zhang K
    Nature; 2015 Jul; 523(7562):607-11. PubMed ID: 26200341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. βB2 W151R mutant is prone to degradation, aggregation and exposes the hydrophobic side chains in the fourth Greek Key motif.
    Xu J; Wang H; Wang A; Xu J; Fu C; Jia Z; Yao K; Chen X
    Biochim Biophys Acta Mol Basis Dis; 2021 Feb; 1867(2):166018. PubMed ID: 33246011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms.
    Chen XJ; Hu LD; Yao K; Yan YB
    Biochem Biophys Res Commun; 2018 Dec; 506(4):868-873. PubMed ID: 30392915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ophthalmology: Cataracts dissolved.
    Hejtmancik JF
    Nature; 2015 Jul; 523(7562):540-1. PubMed ID: 26200338
    [No Abstract]   [Full Text] [Related]  

  • 5. DRUG DISCOVERY. A new dawn for cataracts.
    Quinlan RA
    Science; 2015 Nov; 350(6261):636-7. PubMed ID: 26542559
    [No Abstract]   [Full Text] [Related]  

  • 6. Pharmacological approaches to restoring lens transparency: Real world applications.
    Skinner C; Miraldi Utz V
    Ophthalmic Genet; 2017; 38(3):201-205. PubMed ID: 27648776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure of Oxysterols Such as Lanosterol to Restore Lens Clarity from Cataracts.
    Daszynski DM; Santhoshkumar P; Phadte AS; Sharma KK; Zhong HA; Lou MF; Kador PF
    Sci Rep; 2019 Jun; 9(1):8459. PubMed ID: 31186457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, Evaluation, and Structure-Activity Relationship Study of Lanosterol Derivatives To Reverse Mutant-Crystallin-Induced Protein Aggregation.
    Yang X; Chen XJ; Yang Z; Xi YB; Wang L; Wu Y; Yan YB; Rao Y
    J Med Chem; 2018 Oct; 61(19):8693-8706. PubMed ID: 30153006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of oxysterols in human lenses: Implications of the sterol pathway in age-related cataracts.
    Reyes LP; Reyes TC; Dueñas Z; Duran D; Perdomo S; Avila MY
    J Steroid Biochem Mol Biol; 2023 Jan; 225():106200. PubMed ID: 36272497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of lanosterol on human cataract nucleus.
    Shanmugam PM; Barigali A; Kadaskar J; Borgohain S; Mishra DK; Ramanjulu R; Minija CK
    Indian J Ophthalmol; 2015 Dec; 63(12):888-90. PubMed ID: 26862091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.
    Andley UP; Goldman JW
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):234-9. PubMed ID: 26071686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C.
    Khoshaman K; Yousefi R; Tamaddon AM; Abolmaali SS; Oryan A; Moosavi-Movahedi AA; Kurganov BI
    Biochim Biophys Acta Proteins Proteom; 2017 May; 1865(5):604-618. PubMed ID: 28179137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional properties, chaperone activity and posttranslational modifications of alpha-crystallin and its related subunits in the crystalline lens: N-acetylcarnosine, carnosine and carcinine act as alpha- crystallin/small heat shock protein enhancers in prevention and dissolution of cataract in ocular drug delivery formulations of novel therapeutic agents.
    Babizhayev MA
    Recent Pat Drug Deliv Formul; 2012 Aug; 6(2):107-48. PubMed ID: 22436026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanosterol Synthase Prevents EMT During Lens Epithelial Fibrosis Via Regulating SREBP1.
    Ma P; Huang J; Chen B; Huang M; Xiong L; Chen J; Huang S; Liu Y
    Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):12. PubMed ID: 38079167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens crystallin modifications and cataract in transgenic mice overexpressing acylpeptide hydrolase.
    Santhoshkumar P; Xie L; Raju M; Reneker L; Sharma KK
    J Biol Chem; 2014 Mar; 289(13):9039-52. PubMed ID: 24554718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A missense mutation in CRYBB2 leads to progressive congenital membranous cataract by impacting the solubility and function of βB2-crystallin.
    Chen W; Chen X; Hu Z; Lin H; Zhou F; Luo L; Zhang X; Zhong X; Yang Y; Wu C; Lin Z; Ye S; Liu Y;
    PLoS One; 2013; 8(11):e81290. PubMed ID: 24312286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Congenital Cataract-Causing Mutation G129C in γC-Crystallin Promotes the Accumulation of Two Distinct Unfolding Intermediates That Form Highly Toxic Aggregates.
    Xi YB; Chen XJ; Zhao WJ; Yan YB
    J Mol Biol; 2015 Aug; 427(17):2765-81. PubMed ID: 26165230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat treatment of soluble proteins isolated from human cataract lens leads to the formation of non-fibrillar amyloid-like protein aggregates.
    Mittal C; Kumari A; De I; Singh M; Harsolia R; Yadav JK
    Int J Biol Macromol; 2021 Oct; 188():512-522. PubMed ID: 34333005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing susceptibility to oxidative stress by cataract-causing crystallin mutations.
    Zhao WJ; Yan YB
    Int J Biol Macromol; 2018 Mar; 108():665-673. PubMed ID: 29222017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defect of LSS Disrupts Lens Development in Cataractogenesis.
    Zhao M; Mei T; Shang B; Zou B; Lian Q; Xu W; Wu K; Lai Y; Liu C; Wei L; Zhu J; Zhang K; Liu Y; Zhao L
    Front Cell Dev Biol; 2021; 9():788422. PubMed ID: 34926465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.