BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26200390)

  • 1. CO-Releasing Polymers Exert Antimicrobial Activity.
    Nguyen D; Nguyen TK; Rice SA; Boyer C
    Biomacromolecules; 2015 Sep; 16(9):2776-86. PubMed ID: 26200390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bismuth-thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa.
    Halwani M; Hebert S; Suntres ZE; Lafrenie RM; Azghani AO; Omri A
    Int J Pharm; 2009 May; 373(1-2):141-6. PubMed ID: 19429299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance.
    Mah TF; Pitts B; Pellock B; Walker GC; Stewart PS; O'Toole GA
    Nature; 2003 Nov; 426(6964):306-10. PubMed ID: 14628055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic Carbon Monoxide-Releasing Polymers as Antimicrobial and Antibiofilm Agents by the Synergetic Activity.
    Wang L; Zhong W; Liu B; Pranantyo D; Chan-Park MB
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41772-41782. PubMed ID: 37609827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly branched polymers with polymyxin end groups responsive to Pseudomonas aeruginosa.
    Sarker P; Shepherd J; Swindells K; Douglas I; MacNeil S; Swanson L; Rimmer S
    Biomacromolecules; 2011 Jan; 12(1):1-5. PubMed ID: 21126084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Needed, new paradigms in antibiotic development.
    Ceri H; Olson ME; Turner RJ
    Expert Opin Pharmacother; 2010 Jun; 11(8):1233-7. PubMed ID: 20384540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly effective contact antimicrobial surfaces via polymer surface modifiers.
    Kurt P; Wood L; Ohman DE; Wynne KJ
    Langmuir; 2007 Apr; 23(9):4719-23. PubMed ID: 17388618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules.
    Desmard M; Foresti R; Morin D; Dagouassat M; Berdeaux A; Denamur E; Crook SH; Mann BE; Scapens D; Montravers P; Boczkowski J; Motterlini R
    Antioxid Redox Signal; 2012 Jan; 16(2):153-63. PubMed ID: 21864022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review: Antibiotic discovery in the age of structural biology - a comprehensive overview with special reference to development of drugs for the treatment of Pseudomonas aeruginosa infection.
    Koehnke A; Friedrich RE
    In Vivo; 2015; 29(2):161-7. PubMed ID: 25792642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules.
    Tavares AF; Nobre LS; Saraiva LM
    FEMS Microbiol Lett; 2012 Nov; 336(1):1-10. PubMed ID: 22774863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections.
    Baelo A; Levato R; Julián E; Crespo A; Astola J; Gavaldà J; Engel E; Mateos-Timoneda MA; Torrents E
    J Control Release; 2015 Jul; 209():150-8. PubMed ID: 25913364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of antibiotics on Pseudomonas aeruginosa NK125502 and Pseudomonas fluorescens MF0 biofilm formation on immobilized fibronectin.
    Gagnière H; Di Martino P
    J Chemother; 2004 Jun; 16(3):244-7. PubMed ID: 15330319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity.
    Timofeeva LM; Kleshcheva NA; Moroz AF; Didenko LV
    Biomacromolecules; 2009 Nov; 10(11):2976-86. PubMed ID: 19795886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteria-Resistant Single Chain Cyclized/Knotted Polymer Coatings.
    Xu Q; A S; Venet M; Gao Y; Zhou D; Wang W; Zeng M; Rotella C; Li X; Wang X; Lyu J; Rodriguez BJ; Wang W
    Angew Chem Int Ed Engl; 2019 Jul; 58(31):10616-10620. PubMed ID: 31150131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Selected mechanisms of resistance to antimicrobial drugs in Pseudomonas aeruginosa and their detection].
    Liptáková A; Siegfried L; Jarcuska P; Schrér I
    Klin Mikrobiol Infekc Lek; 2005 Jun; 11(3):109-11. PubMed ID: 16025430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Report: prevalence and resistance pattern of Pseudomonas aeruginosa against various antibiotics.
    Khan JA; Iqbal Z; Rahman SU; Farzana K; Khan A
    Pak J Pharm Sci; 2008 Jul; 21(3):311-5. PubMed ID: 18614431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: Carbon-substituted analogues at the C-2 position.
    Yoshida K; Nakayama K; Kuru N; Kobayashi S; Ohtsuka M; Takemura M; Hoshino K; Kanda H; Zhang JZ; Lee VJ; Watkins WJ
    Bioorg Med Chem; 2006 Mar; 14(6):1993-2004. PubMed ID: 16290941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa.
    Silva LV; Galdino AC; Nunes AP; dos Santos KR; Moreira BM; Cacci LC; Sodré CL; Ziccardi M; Branquinha MH; Santos AL
    Int J Med Microbiol; 2014 Nov; 304(8):990-1000. PubMed ID: 25127423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009.
    Master RN; Clark RB; Karlowsky JA; Ramirez J; Bordon JM
    Int J Antimicrob Agents; 2011 Oct; 38(4):291-5. PubMed ID: 21737249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies.
    El Zowalaty ME; Al Thani AA; Webster TJ; El Zowalaty AE; Schweizer HP; Nasrallah GK; Marei HE; Ashour HM
    Future Microbiol; 2015; 10(10):1683-706. PubMed ID: 26439366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.