These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 2620061)

  • 1. Fluorescence studies of the conformational dynamics of parvalbumin in solution: lifetime and rotational motions of the single tryptophan residue.
    Ferreira ST
    Biochemistry; 1989 Dec; 28(26):10066-72. PubMed ID: 2620061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifetime and quenching of tryptophan fluorescence in whiting parvalbumin.
    Castelli F; White HD; Forster LS
    Biochemistry; 1988 May; 27(9):3366-72. PubMed ID: 3390437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of parvalbumin studied by fluorescence emission and triplet absorption spectroscopy of tryptophan.
    Sudhakar K; Phillips CM; Owen CS; Vanderkooi JM
    Biochemistry; 1995 Jan; 34(4):1355-63. PubMed ID: 7827083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of metal ion-induced conformational changes in parvalbumin and oncomodulin as probed by the intrinsic fluorescence of tryptophan 102.
    Hutnik CM; MacManus JP; Banville D; Szabo AG
    J Biol Chem; 1990 Jul; 265(20):11456-64. PubMed ID: 2365679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited states of tryptophan in cod parvalbumin. Identification of a short-lived emitting triplet state at room temperature.
    Sudhakar K; Phillips CM; Williams SA; Vanderkooi JM
    Biophys J; 1993 May; 64(5):1503-11. PubMed ID: 8324187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence lifetime and solute quenching studies with the single tryptophan containing protein parvalbumin from codfish.
    Eftink MR; Wasylewski Z
    Biochemistry; 1989 Jan; 28(1):382-91. PubMed ID: 2706263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin.
    Permyakov EA; Yarmolenko VV; Emelyanenko VI; Burstein EA; Closset J; Gerday C
    Eur J Biochem; 1980 Aug; 109(1):307-15. PubMed ID: 6773772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence.
    Permyakov EA; Burstein EA
    Biophys Chem; 1984 May; 19(3):265-71. PubMed ID: 6722276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-domain fluorescence studies of an extracellular metalloproteinase of Staphylococcus aureus.
    Wasylewski Z; Eftink MR
    Biochim Biophys Acta; 1987 Oct; 915(3):331-41. PubMed ID: 3115297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of calcium binding on the quenching time of self-fluorescence of Ca-binding proteins].
    Permiakov EA; Burshteĭn EA; Emel'ianenko VI; Aleksandrov IuM; Glagolev KV
    Biofizika; 1983; 28(3):393-8. PubMed ID: 6871261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics.
    Moncrieffe MC; Juranic N; Kemple MD; Potter JD; Macura S; Prendergast FG
    J Mol Biol; 2000 Mar; 297(1):147-63. PubMed ID: 10704313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A calcium-specific conformational response of parvalbumin.
    Hutnik CM; MacManus JP; Szabo AG
    Biochemistry; 1990 Aug; 29(31):7318-28. PubMed ID: 2207108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium and potassium binding to parvalbumins measured by means of intrinsic protein fluorescence.
    Permyakov EA; Kalinichenko LP; Medvedkin VN; Burstein EA; Gerday C
    Biochim Biophys Acta; 1983 Dec; 749(2):185-91. PubMed ID: 6652098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59).
    Vincent M; Brochon JC; Merola F; Jordi W; Gallay J
    Biochemistry; 1988 Nov; 27(24):8752-61. PubMed ID: 2853969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.
    Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT
    Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat capacity and entropy changes of the major isotype of the toad (Bufo) parvalbumin induced by calcium binding.
    Tanokura M
    Eur J Biochem; 1990 Feb; 188(1):23-8. PubMed ID: 2156694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constrained analysis of fluorescence anisotropy decay:application to experimental protein dynamics.
    Feinstein E; Deikus G; Rusinova E; Rachofsky EL; Ross JB; Laws WR
    Biophys J; 2003 Jan; 84(1):599-611. PubMed ID: 12524313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.