These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 26200746)
1. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method. Diarra H; Mazel V; Busignies V; Tchoreloff P Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746 [TBL] [Abstract][Full Text] [Related]
2. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology. Podczeck F; Drake KR; Newton JM Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation. Mazel V; Diarra H; Busignies V; Tchoreloff P J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539 [TBL] [Abstract][Full Text] [Related]
4. Numerical Investigation of the Residual Stress Distribution of Flat-Faced and Convexly Curved Tablets Using the Finite Element Method. Otoguro S; Hayashi Y; Miura T; Uehara N; Utsumi S; Onuki Y; Obata Y; Takayama K Chem Pharm Bull (Tokyo); 2015; 63(11):890-900. PubMed ID: 26279237 [TBL] [Abstract][Full Text] [Related]
5. Prediction of tablet characteristics from residual stress distribution estimated by the finite element method. Hayashi Y; Miura T; Shimada T; Onuki Y; Obata Y; Takayama K J Pharm Sci; 2013 Oct; 102(10):3678-86. PubMed ID: 23897300 [TBL] [Abstract][Full Text] [Related]
6. FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments. Diarra H; Mazel V; Busignies V; Tchoreloff P Int J Pharm; 2013 Sep; 453(2):389-94. PubMed ID: 23747487 [TBL] [Abstract][Full Text] [Related]
7. Lamination of biconvex tablets: Numerical and experimental study. Mazel V; Diarra H; Malvestio J; Tchoreloff P Int J Pharm; 2018 May; 542(1-2):66-71. PubMed ID: 29526618 [TBL] [Abstract][Full Text] [Related]
8. Reevaluation of the diametral compression test for tablets using the flattened disc geometry. Mazel V; Guerard S; Croquelois B; Kopp JB; Girardot J; Diarra H; Busignies V; Tchoreloff P Int J Pharm; 2016 Nov; 513(1-2):669-677. PubMed ID: 27702696 [TBL] [Abstract][Full Text] [Related]
9. Numerical evaluation of the capping tendency of microcrystalline cellulose tablets during a diametrical compression test. Furukawa R; Chen Y; Horiguchi A; Takagaki K; Nishi J; Konishi A; Shirakawa Y; Sugimoto M; Narisawa S Int J Pharm; 2015 Sep; 493(1-2):182-91. PubMed ID: 26188313 [TBL] [Abstract][Full Text] [Related]
10. Influence of the punch diameter and curvature on the yield pressure of MCC-compacts during Heckel analysis. Kiekens F; Debunne A; Vervaet C; Baert L; Vanhoutte F; Van Assche I; Menard F; Remon JP Eur J Pharm Sci; 2004 Jun; 22(2-3):117-26. PubMed ID: 15158897 [TBL] [Abstract][Full Text] [Related]
11. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
12. Effect of process variables on the Drucker-Prager cap model and residual stress distribution of tablets estimated by the finite element method. Hayashi Y; Otoguro S; Miura T; Onuki Y; Obata Y; Takayama K Chem Pharm Bull (Tokyo); 2014; 62(11):1062-72. PubMed ID: 25109913 [TBL] [Abstract][Full Text] [Related]
13. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing. Podczeck F; Newton JM; Fromme P Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775 [TBL] [Abstract][Full Text] [Related]
14. Modelling of the break force of tablets under diametrical compression. Shang C; Sinka IC; Pan J Int J Pharm; 2013 Mar; 445(1-2):99-107. PubMed ID: 23357256 [TBL] [Abstract][Full Text] [Related]
15. Effect of friction between powder and tooling on the die-wall pressure evolution during tableting: Experimental and numerical results for flat and concave punches. Mazel V; Diarra H; Tchoreloff P Int J Pharm; 2019 Jan; 554():116-124. PubMed ID: 30395955 [TBL] [Abstract][Full Text] [Related]
16. Analysis of tablet compaction. II. Finite element analysis of density distributions in convex tablets. Sinka IC; Cunningham JC; Zavaliangos A J Pharm Sci; 2004 Aug; 93(8):2040-53. PubMed ID: 15236453 [TBL] [Abstract][Full Text] [Related]
17. Comparison of different failure tests for pharmaceutical tablets: applicability of the Drucker-Prager failure criterion. Mazel V; Diarra H; Busignies V; Tchoreloff P Int J Pharm; 2014 Aug; 470(1-2):63-9. PubMed ID: 24810242 [TBL] [Abstract][Full Text] [Related]
18. Changes in the specific surface area of tablets composed of pharmaceutical materials with various deformation behaviors. Busignies V; Leclerc B; Truchon S; Tchoreloff P Drug Dev Ind Pharm; 2011 Feb; 37(2):225-33. PubMed ID: 20653462 [TBL] [Abstract][Full Text] [Related]
19. Numerical study for tableting process in consideration of compression speed. Ohsaki S; Kushida K; Matsuda Y; Nakamura H; Watano S Int J Pharm; 2020 Feb; 575():118936. PubMed ID: 31846729 [TBL] [Abstract][Full Text] [Related]
20. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate. Nordström J; Alderborn G J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]