These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26200924)

  • 1. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change.
    Nguyen-Huu TD; Gupta C; Ma B; Ott W; Josić K; Bennett MR
    PLoS Comput Biol; 2015 Jul; 11(7):e1004399. PubMed ID: 26200924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS; Leidy C; Pedraza JM
    Nat Commun; 2013; 4():2605. PubMed ID: 24189549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology.
    Martínez JL; Bordel S; Hong KK; Nielsen J
    FEMS Yeast Res; 2014 Jun; 14(4):654-62. PubMed ID: 24655306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A yeast catabolic enzyme controls transcriptional memory.
    Zacharioudakis I; Gligoris T; Tzamarias D
    Curr Biol; 2007 Dec; 17(23):2041-6. PubMed ID: 17997309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae.
    Howard SC; Deminoff SJ; Herman PK
    Curr Genet; 2006 Jan; 49(1):1-6. PubMed ID: 16292676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function.
    Velagapudi VR; Wittmann C; Schneider K; Heinzle E
    J Biotechnol; 2007 Dec; 132(4):395-404. PubMed ID: 17919760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae.
    Apostu R; Mackey MC
    J Theor Biol; 2012 Jan; 293():219-35. PubMed ID: 22024631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose.
    Escalante-Chong R; Savir Y; Carroll SM; Ingraham JB; Wang J; Marx CJ; Springer M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1636-41. PubMed ID: 25605920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose.
    Das Adhikari AK; Qureshi MT; Kar RK; Bhat PJ
    Mol Microbiol; 2014 Oct; 94(1):202-17. PubMed ID: 25135592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae.
    Ferreira Júnior JR; Ramos AS; Chambergo FS; Stambuk BU; Muschellack LK; Schumacher R; El-Dorry H
    Biochem Biophys Res Commun; 2006 Jan; 339(1):30-6. PubMed ID: 16297867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological characterization of glucose repression in the strains with SNF1 and SNF4 genes deleted.
    Usaite R; Nielsen J; Olsson L
    J Biotechnol; 2008 Jan; 133(1):73-81. PubMed ID: 17949842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Crabtree Effect Shapes the Saccharomyces cerevisiae Lag Phase during the Switch between Different Carbon Sources.
    Perez-Samper G; Cerulus B; Jariani A; Vermeersch L; Barrajón Simancas N; Bisschops MMM; van den Brink J; Solis-Escalante D; Gallone B; De Maeyer D; van Bael E; Wenseleers T; Michiels J; Marchal K; Daran-Lapujade P; Verstrepen KJ
    mBio; 2018 Oct; 9(5):. PubMed ID: 30377274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population diversification in a yeast metabolic program promotes anticipation of environmental shifts.
    Venturelli OS; Zuleta I; Murray RM; El-Samad H
    PLoS Biol; 2015 Jan; 13(1):e1002042. PubMed ID: 25626086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical model of galactose regulation and metabolic consumption in yeast.
    Mitre TM; Mackey MC; Khadra A
    J Theor Biol; 2016 Oct; 407():238-258. PubMed ID: 27395401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa.
    Ra CH; Kim YJ; Lee SY; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2015 Sep; 38(9):1715-22. PubMed ID: 25964182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol production from galactose by a newly isolated Saccharomyces cerevisiae KL17.
    Kim JH; Ryu J; Huh IY; Hong SK; Kang HA; Chang YK
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1871-8. PubMed ID: 24615517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The adaptive filter of the yeast galactose pathway.
    Smidtas S; Schächter V; Képès F
    J Theor Biol; 2006 Sep; 242(2):372-81. PubMed ID: 16643954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting sugars and shifting paradigms.
    Siegal ML
    PLoS Biol; 2015 Feb; 13(2):e1002068. PubMed ID: 25688600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.