BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26201255)

  • 1. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J; Zhu Z; Liu W; Yuan X; Qin S
    Nanoscale; 2015 Aug; 7(32):13530-6. PubMed ID: 26201255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable light trapping and absorption enhancement with graphene ring arrays.
    Xiao S; Wang T; Liu Y; Xu C; Han X; Yan X
    Phys Chem Chem Phys; 2016 Sep; 18(38):26661-26669. PubMed ID: 27722336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping.
    Liu W; Zhang J; Zhu Z; Yuan X; Qin S
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity.
    Chen Z; Li X; Wang J; Tao L; Long M; Liang SJ; Ang LK; Shu C; Tsang HK; Xu JB
    ACS Nano; 2017 Jan; 11(1):430-437. PubMed ID: 28005326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Plasmonic Fractal Metamaterials for Broadband Photodetectors.
    De Nicola F; Puthiya Purayil NS; Miŝeikis V; Spirito D; Tomadin A; Coletti C; Polini M; Krahne R; Pellegrini V
    Sci Rep; 2020 Apr; 10(1):6882. PubMed ID: 32327667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-layer graphene for enhanced tunable infrared plasmonics.
    Rodrigo D; Tittl A; Limaj O; Abajo FJG; Pruneri V; Altug H
    Light Sci Appl; 2017 Jun; 6(6):e16277. PubMed ID: 30167262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced plasmonic light absorption engineering of graphene: simulation by boundary-integral spectral element method.
    Niu J; Luo M; Zhu J; Liu QH
    Opt Express; 2015 Feb; 23(4):4539-51. PubMed ID: 25836491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable UV-Emitters through Graphene Plasmonics.
    Sloan J; Rivera N; Soljačić M; Kaminer I
    Nano Lett; 2018 Jan; 18(1):308-313. PubMed ID: 29240447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications.
    Ullah Z; Witjaksono G; Nawi I; Tansu N; Irfan Khattak M; Junaid M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32143388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional plasmonic sensitization of graphene in mid-infrared.
    Paria D; Vadakkumbatt V; Ravindra P; Avasthi S; Ghosh A
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33873164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators.
    Brar VW; Jang MS; Sherrott M; Lopez JJ; Atwater HA
    Nano Lett; 2013 Jun; 13(6):2541-7. PubMed ID: 23621616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light Management with Nanostructures for Optoelectronic Devices.
    Leung SF; Zhang Q; Xiu F; Yu D; Ho JC; Li D; Fan Z
    J Phys Chem Lett; 2014 Apr; 5(8):1479-95. PubMed ID: 26269997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene.
    Safaei A; Chandra S; Leuenberger MN; Chanda D
    ACS Nano; 2019 Jan; 13(1):421-428. PubMed ID: 30525437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors.
    Deng T; Zhang Z; Liu Y; Wang Y; Su F; Li S; Zhang Y; Li H; Chen H; Zhao Z; Li Y; Liu Z
    Nano Lett; 2019 Mar; 19(3):1494-1503. PubMed ID: 30698978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots.
    Ma T; Yao B; Zheng Z; Liu Z; Ma W; Chen M; Chen H; Deng S; Xu N; Bao Q; Sun DM; Cheng HM; Ren W
    ACS Nano; 2022 Jun; 16(6):9041-9048. PubMed ID: 35696451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene plasmonics for terahertz to mid-infrared applications.
    Low T; Avouris P
    ACS Nano; 2014 Feb; 8(2):1086-101. PubMed ID: 24484181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.