These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26201255)

  • 21. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study.
    Zheng Z; Wang W; Ma T; Deng Z; Ke Y; Zhan R; Zou Q; Ren W; Chen J; She J; Zhang Y; Liu F; Chen H; Deng S; Xu N
    Nanoscale; 2016 Oct; 8(37):16621-30. PubMed ID: 27503188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer.
    Hong Q; Xiong F; Xu W; Zhu Z; Liu K; Yuan X; Zhang J; Qin S
    Opt Express; 2018 Aug; 26(17):22528-22535. PubMed ID: 30130944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybridization of graphene-gold plasmons for active control of mid-infrared radiation.
    Feinstein MD; Almeida E
    Sci Rep; 2024 Mar; 14(1):6733. PubMed ID: 38509246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics.
    Sachet E; Shelton CT; Harris JS; Gaddy BE; Irving DL; Curtarolo S; Donovan BF; Hopkins PE; Sharma PA; Sharma AL; Ihlefeld J; Franzen S; Maria JP
    Nat Mater; 2015 Apr; 14(4):414-20. PubMed ID: 25686264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localized plasmonic field enhancement in shaped graphene nanoribbons.
    Xia SX; Zhai X; Wang LL; Lin Q; Wen SC
    Opt Express; 2016 Jul; 24(15):16336-48. PubMed ID: 27464087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution-Processed Gold Nanorods Integrated with Graphene for Near-Infrared Photodetection via Hot Carrier Injection.
    Xia Z; Li P; Wang Y; Song T; Zhang Q; Sun B
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24136-41. PubMed ID: 26468669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable plasmons in atomically thin gold nanodisks.
    Manjavacas A; García de Abajo FJ
    Nat Commun; 2014 Mar; 5():3548. PubMed ID: 24671020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface plasmons in suspended graphene: launching with in-plane gold nanoantenna and propagation properties.
    Legrand D; Le Cunff LO; Bruyant A; Salas-Montiel R; Liu Z; Tay BK; Maurer T; Bachelot R
    Opt Express; 2017 Jul; 25(15):17306-17321. PubMed ID: 28789223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios.
    Miao J; Hu W; Guo N; Lu Z; Liu X; Liao L; Chen P; Jiang T; Wu S; Ho JC; Wang L; Chen X; Lu W
    Small; 2015 Feb; 11(8):936-42. PubMed ID: 25363206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum Effects in the Nonlinear Response of Graphene Plasmons.
    Cox JD; Silveiro I; García de Abajo FJ
    ACS Nano; 2016 Feb; 10(2):1995-2003. PubMed ID: 26718484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-sensitive near-infrared graphene photodetectors with nanopillar antennas.
    Liu Y; Huang W; Gong T; Su Y; Zhang H; He Y; Liu Z; Yu B
    Nanoscale; 2017 Nov; 9(44):17459-17464. PubMed ID: 29106432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graphene plasmonics for tunable terahertz metamaterials.
    Ju L; Geng B; Horng J; Girit C; Martin M; Hao Z; Bechtel HA; Liang X; Zettl A; Shen YR; Wang F
    Nat Nanotechnol; 2011 Sep; 6(10):630-4. PubMed ID: 21892164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.
    Xiong Y; Long R; Liu D; Zhong X; Wang C; Li ZY; Xie Y
    Nanoscale; 2012 Aug; 4(15):4416-20. PubMed ID: 22614804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic tailoring of electromagnetic behaviors of graphene plasmonic oligomers by local chemical potential.
    Ren J; Wang W; Qiu W; Qiu P; Wang Z; Lin Z; Wang JX; Kan Q; Pan JQ
    Phys Chem Chem Phys; 2018 Jun; 20(24):16695-16703. PubMed ID: 29877522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gated tunability and hybridization of localized plasmons in nanostructured graphene.
    Fang Z; Thongrattanasiri S; Schlather A; Liu Z; Ma L; Wang Y; Ajayan PM; Nordlander P; Halas NJ; García de Abajo FJ
    ACS Nano; 2013 Mar; 7(3):2388-95. PubMed ID: 23390960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene Plasmonics in Sensor Applications: A Review.
    Ogawa S; Fukushima S; Shimatani M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32586048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances.
    Kang P; Kim KH; Park HG; Nam S
    Light Sci Appl; 2018; 7():17. PubMed ID: 30839518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically tunable nonlinear plasmonics in graphene nanoislands.
    Cox JD; Javier García de Abajo F
    Nat Commun; 2014 Dec; 5():5725. PubMed ID: 25500534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.