These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26201255)

  • 41. Electronically Tunable Perfect Absorption in Graphene.
    Kim S; Jang MS; Brar VW; Mauser KW; Kim L; Atwater HA
    Nano Lett; 2018 Feb; 18(2):971-979. PubMed ID: 29320203
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmonic-enhanced perovskite-graphene hybrid photodetectors.
    Sun Z; Aigouy L; Chen Z
    Nanoscale; 2016 Apr; 8(14):7377-83. PubMed ID: 26882839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
    Freitag M; Low T; Zhu W; Yan H; Xia F; Avouris P
    Nat Commun; 2013; 4():1951. PubMed ID: 23727714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.
    Yu R; Pruneri V; García de Abajo FJ
    Sci Rep; 2016 Aug; 6():32144. PubMed ID: 27561789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors.
    Ni Z; Ma L; Du S; Xu Y; Yuan M; Fang H; Wang Z; Xu M; Li D; Yang J; Hu W; Pi X; Yang D
    ACS Nano; 2017 Oct; 11(10):9854-9862. PubMed ID: 28921944
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmonics in atomically thin materials.
    García de Abajo FJ; Manjavacas A
    Faraday Discuss; 2015; 178():87-107. PubMed ID: 25774774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology.
    Sun Z; Chang H
    ACS Nano; 2014 May; 8(5):4133-56. PubMed ID: 24716438
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface Plasmon Polariton Graphene Photodetectors.
    Echtermeyer TJ; Milana S; Sassi U; Eiden A; Wu M; Lidorikis E; Ferrari AC
    Nano Lett; 2016 Jan; 16(1):8-20. PubMed ID: 26666842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Patterned graphene edges for tailored reflection of plasmonic modes.
    Rosolen G; Maes B
    Opt Lett; 2015 Jun; 40(12):2727-30. PubMed ID: 26076247
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunable THz absorption in graphene-based heterostructures.
    Deng XH; Liu JT; Yuan J; Wang TB; Liu NH
    Opt Express; 2014 Dec; 22(24):30177-83. PubMed ID: 25606948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quasi-phase matching for efficient long-range plasmonic third-harmonic generation via graphene.
    Nasari H; Abrishamian MS
    Opt Lett; 2015 Dec; 40(23):5510-3. PubMed ID: 26625038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells.
    Ali A; El-Mellouhi F; Mitra A; Aïssa B
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate.
    Zheng J; Yu L; He S; Dai D
    Sci Rep; 2015 Jan; 5():7987. PubMed ID: 25614327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals.
    Jang S; Hwang E; Lee Y; Lee S; Cho JH
    Nano Lett; 2015 Apr; 15(4):2542-7. PubMed ID: 25811444
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable and Tunable Periodic Graphene Nanohole Arrays for Mid-Infrared Plasmonics.
    Gopalan KK; Paulillo B; Mackenzie DMA; Rodrigo D; Bareza N; Whelan PR; Shivayogimath A; Pruneri V
    Nano Lett; 2018 Sep; 18(9):5913-5918. PubMed ID: 30114919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancing the graphene photocurrent using surface plasmons and a p-n junction.
    Wang D; Allcca AEL; Chung TF; Kildishev AV; Chen YP; Boltasseva A; Shalaev VM
    Light Sci Appl; 2020; 9():126. PubMed ID: 32704359
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Localized surface plasmons in vibrating graphene nanodisks.
    Wang W; Li BH; Stassen E; Mortensen NA; Christensen J
    Nanoscale; 2016 Feb; 8(6):3809-15. PubMed ID: 26815600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.