These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26201745)

  • 1. Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors.
    Meyer A; Pellaux R; Potot S; Becker K; Hohmann HP; Panke S; Held M
    Nat Chem; 2015 Aug; 7(8):673-8. PubMed ID: 26201745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.
    Pedrolli DB; Kühm C; Sévin DC; Vockenhuber MP; Sauer U; Suess B; Mack M
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):14054-9. PubMed ID: 26494285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch.
    Wickiser JK; Winkler WC; Breaker RR; Crothers DM
    Mol Cell; 2005 Apr; 18(1):49-60. PubMed ID: 15808508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
    Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M
    FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions.
    Ravikumar Y; Nadarajan SP; Lee CS; Jung S; Bae DH; Yun H
    J Microbiol Biotechnol; 2016 Mar; 26(3):530-9. PubMed ID: 26699753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters.
    Drepper T; Huber R; Heck A; Circolone F; Hillmer AK; Büchs J; Jaeger KE
    Appl Environ Microbiol; 2010 Sep; 76(17):5990-4. PubMed ID: 20601504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters.
    Mukherjee A; Walker J; Weyant KB; Schroeder CM
    PLoS One; 2013; 8(5):e64753. PubMed ID: 23741385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs.
    Pedrolli DB; Mack M
    Methods Mol Biol; 2014; 1103():165-76. PubMed ID: 24318894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering an FMN-based iLOV protein for the detection of arsenic ions.
    Ravikumar Y; Nadarajan SP; Lee CS; Yun H
    Anal Biochem; 2017 May; 525():38-43. PubMed ID: 28245978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin mononucleotide-binding domain of the flavoprotein component of the sulfite reductase from Escherichia coli.
    Coves J; Zeghouf M; Macherel D; Guigliarelli B; Asso M; Fontecave M
    Biochemistry; 1997 May; 36(19):5921-8. PubMed ID: 9153434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing the Periplasm of Bacterial Cells To Develop Biocatalysts for the Biosynthesis of Highly Pure Chemicals.
    Yang Y; Wu Y; Hu Y; Wang H; Guo L; Fredrickson JK; Cao B
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bacillus subtilis ypaA gene regulation mechanism involves FMN-binding sensor RNA].
    Sklyarova SA; Mironov AS
    Genetika; 2014 Mar; 50(3):364-8. PubMed ID: 25438558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation and Development of an Escherichia coli Riboflavin Pathway Phenotypic Screen Hit as a Small-Molecule Ligand of the Flavin Mononucleotide Riboswitch.
    Balibar CJ; Villafania A; Barbieri CM; Murgolo N; Roemer T; Wang H; Howe JA
    Methods Mol Biol; 2018; 1787():19-40. PubMed ID: 29736707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication.
    Furuya T; Takahashi S; Ishii Y; Kino K; Kirimura K
    Biochem Biophys Res Commun; 2004 Jan; 313(3):570-5. PubMed ID: 14697229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis.
    Hossain GS; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J
    J Biotechnol; 2014 Jan; 169():112-20. PubMed ID: 24172254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the binding of BODIPY-GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis.
    Nakasone Y; Hellingwerf KJ
    Photochem Photobiol; 2011; 87(3):542-7. PubMed ID: 21388385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavin mononucleotide enzyme electrode amplified by a bioelectrocatalytic cycle.
    Yao T; Nishimura Y
    Anal Sci; 2002 Sep; 18(9):1035-7. PubMed ID: 12243400
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.