BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 26202071)

  • 1. Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training.
    Ellefsen S; Hammarström D; Strand TA; Zacharoff E; Whist JE; Rauk I; Nygaard H; Vegge G; Hanestadhaugen M; Wernbom M; Cumming KT; Rønning R; Raastad T; Rønnestad BR
    Am J Physiol Regul Integr Comp Physiol; 2015 Oct; 309(7):R767-79. PubMed ID: 26202071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure.
    Bjørnsen T; Wernbom M; Løvstad A; Paulsen G; D'Souza RF; Cameron-Smith D; Flesche A; Hisdal J; Berntsen S; Raastad T
    J Appl Physiol (1985); 2019 Mar; 126(3):578-592. PubMed ID: 30543499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial.
    Hughes L; Rosenblatt B; Haddad F; Gissane C; McCarthy D; Clarke T; Ferris G; Dawes J; Paton B; Patterson SD
    Sports Med; 2019 Nov; 49(11):1787-1805. PubMed ID: 31301034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-load blood flow restriction training induces similar morphological and mechanical Achilles tendon adaptations compared with high-load resistance training.
    Centner C; Lauber B; Seynnes OR; Jerger S; Sohnius T; Gollhofer A; König D
    J Appl Physiol (1985); 2019 Dec; 127(6):1660-1667. PubMed ID: 31725362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myofiber hypertrophy adaptations following 6 weeks of low-load resistance training with blood flow restriction in untrained males and females.
    Reece TM; Godwin JS; Strube MJ; Ciccone AB; Stout KW; Pearson JR; Vopat BG; Gallagher PM; Roberts MD; Herda TJ
    J Appl Physiol (1985); 2023 May; 134(5):1240-1255. PubMed ID: 37022967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and molecular adaptations of quadriceps and hamstring muscles to blood flow restricted training in patients with ACL rupture.
    Kacin A; Drobnič M; Marš T; Miš K; Petrič M; Weber D; Tomc Žargi T; Martinčič D; Pirkmajer S
    Scand J Med Sci Sports; 2021 Aug; 31(8):1636-1646. PubMed ID: 33837592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood Flow Restriction Does Not Promote Additional Effects on Muscle Adaptations When Combined With High-Load Resistance Training Regardless of Blood Flow Restriction Protocol.
    Teixeira EL; Ugrinowitsch C; de Salles Painelli V; Silva-Batista C; Aihara AY; Cardoso FN; Roschel H; Tricoli V
    J Strength Cond Res; 2021 May; 35(5):1194-1200. PubMed ID: 33900254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Load Blood Flow Restriction and High-Load Resistance Training Induce Comparable Changes in Patellar Tendon Properties.
    Centner C; Jerger S; Lauber B; Seynnes O; Friedrich T; Lolli D; Gollhofer A; König D
    Med Sci Sports Exerc; 2022 Apr; 54(4):582-589. PubMed ID: 34772900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow restriction does not alter the early hypertrophic signaling and short-term adaptive response to resistance exercise when performed to task failure.
    Pignanelli C; Holloway GP; Burr JF
    J Appl Physiol (1985); 2023 May; 134(5):1265-1277. PubMed ID: 37055038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood Flow-restricted Exercise Does Not Induce a Cross-Transfer of Effect: A Randomized Controlled Trial.
    Ampomah K; Amano S; Wages NP; Volz L; Clift R; Ludin AFM; Nakazawa M; Law TD; Manini TM; Thomas JS; Russ DW; Clark BC
    Med Sci Sports Exerc; 2019 Sep; 51(9):1817-1827. PubMed ID: 30913160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals.
    Davids CJ; Næss TC; Moen M; Cumming KT; Horwath O; Psilander N; Ekblom B; Coombes JS; Peake J; Raastad T; Roberts LA
    J Appl Physiol (1985); 2021 Dec; 131(6):1731-1749. PubMed ID: 34554017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type 1 Muscle Fiber Hypertrophy after Blood Flow-restricted Training in Powerlifters.
    Bjørnsen T; Wernbom M; Kirketeig A; Paulsen G; Samnøy L; Bækken L; Cameron-Smith D; Berntsen S; Raastad T
    Med Sci Sports Exerc; 2019 Feb; 51(2):288-298. PubMed ID: 30188363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute Muscular Responses to Practical Low-Load Blood Flow Restriction Exercise Versus Traditional Low-Load Blood Flow Restriction and High-/Low-Load Exercise.
    Thiebaud RS; Abe T; Loenneke JP; Garcia T; Shirazi Y; McArthur R
    J Sport Rehabil; 2020 Sep; 29(7):984-992. PubMed ID: 31821993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood flow restricted resistance training in older adults at risk of mobility limitations.
    Cook SB; LaRoche DP; Villa MR; Barile H; Manini TM
    Exp Gerontol; 2017 Dec; 99():138-145. PubMed ID: 28987643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual and Neuromuscular Responses Adapt Similarly Between High-Load Resistance Training and Low-Load Resistance Training With Blood Flow Restriction.
    Teixeira EL; Painelli VS; Schoenfeld BJ; Silva-Batista C; Longo AR; Aihara AY; Cardoso FN; Peres BA; Tricoli V
    J Strength Cond Res; 2022 Sep; 36(9):2410-2416. PubMed ID: 33306591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis.
    Lixandrão ME; Ugrinowitsch C; Berton R; Vechin FC; Conceição MS; Damas F; Libardi CA; Roschel H
    Sports Med; 2018 Feb; 48(2):361-378. PubMed ID: 29043659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximal, Distal, and Contralateral Effects of Blood Flow Restriction Training on the Lower Extremities: A Randomized Controlled Trial.
    Bowman EN; Elshaar R; Milligan H; Jue G; Mohr K; Brown P; Watanabe DM; Limpisvasti O
    Sports Health; 2019; 11(2):149-156. PubMed ID: 30638439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct adaptations of muscle endurance but not strength or hypertrophy to low-load resistance training with and without blood flow restriction.
    Ida A; Sasaki K
    Exp Physiol; 2024 Jun; 109(6):926-938. PubMed ID: 38502540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Blood Flow Restriction on Upper-Body Musculature Located Distal and Proximal to Applied Pressure.
    Dankel SJ; Jessee MB; Abe T; Loenneke JP
    Sports Med; 2016 Jan; 46(1):23-33. PubMed ID: 26446893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alternating blood flow restricted training and heavy-load resistance training on myofiber morphology and mechanical muscle function.
    Hansen SK; Ratzer J; Nielsen JL; Suetta C; Karlsen A; Kvorning T; Frandsen U; Aagaard P
    J Appl Physiol (1985); 2020 Jun; 128(6):1523-1532. PubMed ID: 32324471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.