These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26202090)

  • 81. Rolling Circle Amplification Tailored for Plasmonic Biosensors: From Ensemble to Single-Molecule Detection.
    Schmidt K; Hageneder S; Lechner B; Zbiral B; Fossati S; Ahmadi Y; Minunni M; Toca-Herrera JL; Reimhult E; Barisic I; Dostalek J
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55017-55027. PubMed ID: 36446038
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Rolling circle amplification shows a sinusoidal template length-dependent amplification bias.
    Joffroy B; Uca YO; Prešern D; Doye JPK; Schmidt TL
    Nucleic Acids Res; 2018 Jan; 46(2):538-545. PubMed ID: 29237070
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification.
    Dean FB; Nelson JR; Giesler TL; Lasken RS
    Genome Res; 2001 Jun; 11(6):1095-9. PubMed ID: 11381035
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Attomole DNA detection assay via rolling circle amplification and single molecule detection.
    Schopf E; Chen Y
    Anal Biochem; 2010 Feb; 397(1):115-7. PubMed ID: 19761749
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Microbead-based rolling circle amplification in a microchip for sensitive DNA detection.
    Sato K; Tachihara A; Renberg B; Mawatari K; Sato K; Tanaka Y; Jarvius J; Nilsson M; Kitamori T
    Lab Chip; 2010 May; 10(10):1262-6. PubMed ID: 20445878
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Signal-on electrochemical DNA (E-DNA) sensor for accurate quantification of nicking-assisted rolling circle amplification (N-RCA) products with attomolar sensitivity.
    Li M; Li D; Huang G; Zhou L; Wen Q; Zhu W; Pan H
    Anal Methods; 2021 Dec; 13(46):5679-5684. PubMed ID: 34812441
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Signal amplification by rolling circle amplification on DNA microarrays.
    Nallur G; Luo C; Fang L; Cooley S; Dave V; Lambert J; Kukanskis K; Kingsmore S; Lasken R; Schweitzer B
    Nucleic Acids Res; 2001 Dec; 29(23):E118. PubMed ID: 11726701
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Capillary DNA sequencing: maximizing the sequence output.
    Almira EC; Panayotova N; Farmerie WG
    J Biomol Tech; 2003 Dec; 14(4):270-7. PubMed ID: 14715885
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Real-time monitoring of rolling circle amplification using aggregation-induced emission: applications in biological detection.
    Jiang HX; Zhao MY; Niu CD; Kong DM
    Chem Commun (Camb); 2015 Nov; 51(92):16518-21. PubMed ID: 26417952
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J
    Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction.
    Thomas DC; Nardone GA; Randall SK
    Arch Pathol Lab Med; 1999 Dec; 123(12):1170-6. PubMed ID: 10583921
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Application of PNA openers for fluorescence-based detection of bacterial DNA.
    Smolina I
    Methods Mol Biol; 2013; 1039():223-31. PubMed ID: 24026699
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.
    Ali MM; Li F; Zhang Z; Zhang K; Kang DK; Ankrum JA; Le XC; Zhao W
    Chem Soc Rev; 2014 May; 43(10):3324-41. PubMed ID: 24643375
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification.
    Maruyama F; Kenzaka T; Yamaguchi N; Tani K; Nasu M
    Appl Environ Microbiol; 2005 Dec; 71(12):7933-40. PubMed ID: 16332770
    [TBL] [Abstract][Full Text] [Related]  

  • 95. DNA amplification method tolerant to sample degradation.
    Wang G; Maher E; Brennan C; Chin L; Leo C; Kaur M; Zhu P; Rook M; Wolfe JL; Makrigiorgos GM
    Genome Res; 2004 Nov; 14(11):2357-66. PubMed ID: 15520297
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced Raman scattering spectroscopy.
    Hu J; Zhang CY
    Anal Chem; 2010 Nov; 82(21):8991-7. PubMed ID: 20919697
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Multiplexed protein profiling on antibody-based microarrays by rolling circle amplification.
    Kingsmore SF; Patel DD
    Curr Opin Biotechnol; 2003 Feb; 14(1):74-81. PubMed ID: 12566005
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P.
    Le BH; Seo YJ
    Bioorg Med Chem Lett; 2018 Jun; 28(11):2035-2038. PubMed ID: 29709251
    [TBL] [Abstract][Full Text] [Related]  

  • 99. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs.
    Xu H; Zhang S; Ouyang C; Wang Z; Wu D; Liu Y; Jiang Y; Wu ZS
    Talanta; 2019 Jan; 192():175-181. PubMed ID: 30348375
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Isothermal DNA amplification in bioanalysis: strategies and applications.
    Kim J; Easley CJ
    Bioanalysis; 2011 Jan; 3(2):227-39. PubMed ID: 21250850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.