These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26202206)

  • 1. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface.
    Seo J; Lee SK; Lee J; Seung Lee J; Kwon H; Cho SW; Ahn JH; Lee T
    Sci Rep; 2015 Jul; 5():12326. PubMed ID: 26202206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.
    Yong J; Chen F; Yang Q; Zhang D; Bian H; Du G; Si J; Meng X; Hou X
    Langmuir; 2013 Mar; 29(10):3274-9. PubMed ID: 23391207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splitting a droplet for femtoliter liquid patterns and single cell isolation.
    Li H; Yang Q; Li G; Li M; Wang S; Song Y
    ACS Appl Mater Interfaces; 2015 May; 7(17):9060-5. PubMed ID: 25761507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation.
    Han H; Lee JS; Kim H; Shin S; Lee J; Kim J; Hou X; Cho SW; Seo J; Lee T
    ACS Nano; 2018 Feb; 12(2):932-941. PubMed ID: 29262253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer adhesion at the solid-liquid interface probed by a single-molecule force sensor.
    Geisler M; Balzer BN; Hugel T
    Small; 2009 Dec; 5(24):2864-9. PubMed ID: 19882687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Completely superhydrophobic PDMS surfaces for microfluidics.
    Tropmann A; Tanguy L; Koltay P; Zengerle R; Riegger L
    Langmuir; 2012 Jun; 28(22):8292-5. PubMed ID: 22590992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels.
    Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C
    Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated microfluidic system capable of size-specific droplet generation with size-dependent droplet separation.
    Lee S; Hong SJ; Yoo HJ; Ahn JH; Cho DI
    J Biomed Nanotechnol; 2013 Jun; 9(6):944-8. PubMed ID: 23858958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.
    Ding Y; Casadevall i Solvas X; deMello A
    Analyst; 2015 Jan; 140(2):414-21. PubMed ID: 25379571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces.
    Cañas N; Kamperman M; Völker B; Kroner E; McMeeking RM; Arzt E
    Acta Biomater; 2012 Jan; 8(1):282-8. PubMed ID: 21925624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas-driven ultrafast reversible switching of super-hydrophobic adhesion on palladium-coated silicon nanowires.
    Seo J; Lee S; Han H; Jung HB; Hong J; Song G; Cho SM; Park C; Lee W; Lee T
    Adv Mater; 2013 Aug; 25(30):4139-44. PubMed ID: 23733597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
    Stanton MM; Ducker RE; MacDonald JC; Lambert CR; McGimpsey WG
    J Colloid Interface Sci; 2012 Feb; 367(1):502-8. PubMed ID: 22129630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile microfluidic droplets array for bioanalysis.
    Hu SW; Xu BY; Ye WK; Xia XH; Chen HY; Xu JJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):935-40. PubMed ID: 25525675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-density fabrication of normally closed microfluidic valves by patterned deactivation of oxidized polydimethylsiloxane.
    Mosadegh B; Tavana H; Lesher-Perez SC; Takayama S
    Lab Chip; 2011 Feb; 11(4):738-42. PubMed ID: 21132212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDMS absorption of small molecules and consequences in microfluidic applications.
    Toepke MW; Beebe DJ
    Lab Chip; 2006 Dec; 6(12):1484-6. PubMed ID: 17203151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.