These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26202206)

  • 21. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stability of radio-frequency plasma-treated polydimethylsiloxane surfaces.
    Chen IJ; Lindner E
    Langmuir; 2007 Mar; 23(6):3118-22. PubMed ID: 17279784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PDMS spreading morphological patterns on substrates of different hydrophilicity in air vacuum and water.
    Zbik MS; Frost RL
    J Colloid Interface Sci; 2010 Apr; 344(2):563-74. PubMed ID: 20144831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanorod-facilitated localized heating of droplets in microfluidic chips.
    Li Z; Wang P; Tong L; Zhang L
    Opt Express; 2013 Jan; 21(1):1281-6. PubMed ID: 23389021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism.
    Huang CJ; Fang WF; Ke MS; Chou HY; Yang JT
    Lab Chip; 2014 Jun; 14(12):2057-62. PubMed ID: 24789224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3D easily-assembled Micro-Cross for droplet generation.
    Wu P; Wang Y; Luo Z; Li Y; Li M; He L
    Lab Chip; 2014 Feb; 14(4):795-8. PubMed ID: 24362554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.
    Lim H; Moon S
    Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-grade optical polydimethylsiloxane for microfluidic applications.
    Lovchik RD; Wolf H; Delamarche E
    Biomed Microdevices; 2011 Dec; 13(6):1027-32. PubMed ID: 21786042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A soft lithographic approach to fabricate patterned microfluidic channels.
    Khademhosseini A; Suh KY; Jon S; Eng G; Yeh J; Chen GJ; Langer R
    Anal Chem; 2004 Jul; 76(13):3675-81. PubMed ID: 15228340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomimetic superhydrophobic and highly oleophobic cotton textiles.
    Hoefnagels HF; Wu D; de With G; Ming W
    Langmuir; 2007 Dec; 23(26):13158-63. PubMed ID: 17985939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reading microdots of a molecularly imprinted polymer by surface-enhanced Raman spectroscopy.
    Kantarovich K; Tsarfati I; Gheber LA; Haupt K; Bar I
    Biosens Bioelectron; 2010 Oct; 26(2):809-14. PubMed ID: 20621465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of a Superhydrophobic and Peroxidase-like Activity Array Chip for H2O2 Sensing by Surface-Enhanced Raman Scattering.
    Yu Z; Park Y; Chen L; Zhao B; Jung YM; Cong Q
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23472-80. PubMed ID: 26437325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An integrated tunable interferometer controlled by liquid diffusion in polydimethylsiloxane.
    Zou Y; Shen Z; Chen X; Di Z; Chen X
    Opt Express; 2012 Aug; 20(17):18931-6. PubMed ID: 23038532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization.
    Qin M; Wang LK; Feng XZ; Yang YL; Wang R; Wang C; Yu L; Shao B; Qiao MQ
    Langmuir; 2007 Apr; 23(8):4465-71. PubMed ID: 17341100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of water-ionic liquid droplet pairs in soybean oil on microfluidic chip.
    Feng X; Yi Y; Yu X; Pang DW; Zhang ZL
    Lab Chip; 2010 Feb; 10(3):313-9. PubMed ID: 20091002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.