BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26202494)

  • 1. Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans.
    Gullón S; Vicente RL; Valverde JR; Marín S; Mellado RP
    Mol Biotechnol; 2015 Oct; 57(10):931-8. PubMed ID: 26202494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the metabolism of protein secretion through the Tat route in Streptomyces lividans.
    Valverde JR; Gullón S; Mellado RP
    BMC Microbiol; 2018 Jun; 18(1):59. PubMed ID: 29898665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans.
    Gullón S; Marín S; Mellado RP
    PLoS One; 2015; 10(7):e0133645. PubMed ID: 26200356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional identification of a
    Vicente RL; Marín S; Valverde JR; Palomino C; Mellado RP; Gullón S
    Open Biol; 2019 Oct; 9(10):190201. PubMed ID: 31662098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans.
    Schaerlaekens K; Lammertyn E; Geukens N; De Keersmaeker S; Anné J; Van Mellaert L
    J Biotechnol; 2004 Sep; 112(3):279-88. PubMed ID: 15313005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway.
    Kolkman MA; van der Ploeg R; Bertels M; van Dijk M; van der Laan J; van Dijl JM; Ferrari E
    Appl Environ Microbiol; 2008 Dec; 74(24):7507-13. PubMed ID: 18931290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion.
    Vrancken K; De Keersmaeker S; Geukens N; Lammertyn E; Anné J; Van Mellaert L
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1150-7. PubMed ID: 17106680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in xylanase production by Streptomyces lividans through simultaneous use of the Sec- and Tat-dependent protein export systems.
    Gauthier C; Li H; Morosoli R
    Appl Environ Microbiol; 2005 Jun; 71(6):3085-92. PubMed ID: 15933005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation.
    De Keersmaeker S; Vrancken K; Van Mellaert L; Anné J; Geukens N
    Microbiology (Reading); 2007 Apr; 153(Pt 4):1087-1094. PubMed ID: 17379717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of TatABC overproduction on Tat- and Sec-dependent protein secretion in Streptomyces lividans.
    De Keersmaeker S; Vrancken K; Van Mellaert L; Lammertyn E; Anné J; Geukens N
    Arch Microbiol; 2006 Dec; 186(6):507-12. PubMed ID: 16944098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Streptomyces lividans proteins secreted by the twin-arginine translocation pathway following growth with different carbon sources.
    Guimond J; Morosoli R
    Can J Microbiol; 2008 Jul; 54(7):549-58. PubMed ID: 18641701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyper secretion of Thermobifida fusca β-glucosidase via a Tat-dependent signal peptide using Streptomyces lividans.
    Miyazaki T; Noda S; Tanaka T; Kondo A
    Microb Cell Fact; 2013 Oct; 12():88. PubMed ID: 24083334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four thiol-oxidoreductases involved in the formation of disulphide bonds in the Streptomyces lividans TK21 secretory proteins.
    Gullón S; Marín S; Mellado RP
    Microb Cell Fact; 2019 Jul; 18(1):126. PubMed ID: 31345224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose.
    Temuujin U; Chi WJ; Lee SY; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):749-59. PubMed ID: 21655986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level overproduction of Thermus enzymes in Streptomyces lividans.
    Díaz M; Ferreras E; Moreno R; Yepes A; Berenguer J; Santamaría R
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):1001-8. PubMed ID: 18461317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli.
    Cristóbal S; de Gier JW; Nielsen H; von Heijne G
    EMBO J; 1999 Jun; 18(11):2982-90. PubMed ID: 10357811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide.
    Caspers M; Brockmeier U; Degering C; Eggert T; Freudl R
    Appl Microbiol Biotechnol; 2010 May; 86(6):1877-85. PubMed ID: 20077115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of protease mutations on the production of xylanases in Streptomyces lividans.
    Arias E; Li H; Morosoli R
    Can J Microbiol; 2007 Jun; 53(6):695-701. PubMed ID: 17668029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a Streptomyces lividans SecG functional analogue on protein secretion.
    Palomino C; Mellado RP
    Int Microbiol; 2008 Mar; 11(1):25-31. PubMed ID: 18683629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic metabolic modelling of overproduced protein secretion in Streptomyces lividans using adaptive DFBA.
    Valverde JR; Gullón S; García-Herrero CA; Campoy I; Mellado RP
    BMC Microbiol; 2019 Oct; 19(1):233. PubMed ID: 31655540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.