These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 26203042)

  • 1. Origin of melting point depression for rare gas solids confined in carbon pores.
    Morishige K; Kataoka T
    J Chem Phys; 2015 Jul; 143(3):034707. PubMed ID: 26203042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower closure point of adsorption hysteresis in ordered mesoporous silicas.
    Morishige K; Ishino M
    Langmuir; 2007 Oct; 23(22):11021-6. PubMed ID: 17894507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing and melting of water confined in silica nanopores.
    Findenegg GH; Jähnert S; Akcakayiran D; Schreiber A
    Chemphyschem; 2008 Dec; 9(18):2651-9. PubMed ID: 19035394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Depletion of Pore-Confined Carbon Dioxide upon Cooling below the Bulk Triple Point: An In Situ Neutron Diffraction Study.
    Stefanopoulos KL; Katsaros FK; Steriotis TA; Sapalidis AA; Thommes M; Bowron DT; Youngs TG
    Phys Rev Lett; 2016 Jan; 116(2):025502. PubMed ID: 26824548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores.
    Fomin YD
    J Comput Chem; 2013 Nov; 34(30):2615-24. PubMed ID: 24006288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the hydroaffinity and topology of pore walls on the structure and dynamics of confined water.
    Harrach MF; Klameth F; Drossel B; Vogel M
    J Chem Phys; 2015 Jan; 142(3):034703. PubMed ID: 25612721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of a thermotropic nematic liquid crystal confined to controlled pore glasses as studied by 129Xe NMR spectroscopy.
    Tallavaara P; Telkki VV; Jokisaari J
    J Phys Chem B; 2006 Nov; 110(43):21603-12. PubMed ID: 17064115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-solid transition of confined water in silica-based mesopores.
    Liu XX; Wang Q; Huang XF; Yang SH; Li CX; Niu XJ; Shi QF; Sun G; Lu KQ
    J Phys Chem B; 2010 Apr; 114(12):4145-50. PubMed ID: 20205437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses.
    Sliwinska-Bartkowiak M; Jazdzewska M; Huang LL; Gubbins KE
    Phys Chem Chem Phys; 2008 Aug; 10(32):4909-19. PubMed ID: 18688535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic chemistry with periodic mesostructures at high pressure.
    Mandal M; Landskron K
    Acc Chem Res; 2013 Nov; 46(11):2536-44. PubMed ID: 23841843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-order transition in confined water between high-density liquid and low-density amorphous phases.
    Koga K; Tanaka H; Zeng XC
    Nature; 2000 Nov; 408(6812):564-7. PubMed ID: 11117739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of methanol confined in MCM-41 investigated by large-angle X-ray scattering technique.
    Takamuku T; Maruyama H; Kittaka S; Takahara S; Yamaguchi T
    J Phys Chem B; 2005 Jan; 109(2):892-9. PubMed ID: 16866456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unravelling the Role of the Compressed Gas on Melting Point of Liquid Confined in Nanospace.
    Chen S; Liu Y; Fu H; He Y; Li C; Huang W; Jiang Z; Wu G
    J Phys Chem Lett; 2012 Apr; 3(8):1052-5. PubMed ID: 26286569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of confined oxygen in silica xerogels.
    Schirato BS; Fang MP; Sokol PE; Komarneni S
    Science; 1995 Jan; 267(5196):369-71. PubMed ID: 17837486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores: a molecular simulation study.
    Shi W; Luebke DR
    Langmuir; 2013 May; 29(18):5563-72. PubMed ID: 23537057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial confinement effect on the atomic structure of solid argon.
    Nishio K; Shinoda W; Morishita T; Mikami M
    J Chem Phys; 2005 Mar; 122(12):124715. PubMed ID: 15836417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of freezing of water in contact with mesoporous silicas MCM-41, SBA-15 and SBA-16: role of boundary water of pore outlets in freezing.
    Kittaka S; Ueda Y; Fujisaki F; Iiyama T; Yamaguchi T
    Phys Chem Chem Phys; 2011 Oct; 13(38):17222-33. PubMed ID: 21879058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.