These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26203054)

  • 1. Biomek Cell Workstation: A Flexible System for Automated 3D Cell Cultivation.
    Lehmann R; Gallert C; Roddelkopf T; Junginger S; Thurow K
    J Lab Autom; 2016 Aug; 21(4):568-78. PubMed ID: 26203054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3 dimensional cell cultures: a comparison between manually and automatically produced alginate beads.
    Lehmann R; Gallert C; Roddelkopf T; Junginger S; Wree A; Thurow K
    Cytotechnology; 2016 Aug; 68(4):1049-62. PubMed ID: 25842191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomek Cell Workstation: A Variable System for Automated Cell Cultivation.
    Lehmann R; Severitt JC; Roddelkopf T; Junginger S; Thurow K
    J Lab Autom; 2016 Jun; 21(3):439-50. PubMed ID: 26259574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automating a Magnetic 3D Spheroid Model Technology for High-Throughput Screening.
    Baillargeon P; Shumate J; Hou S; Fernandez-Vega V; Marques N; Souza G; Seldin J; Spicer TP; Scampavia L
    SLAS Technol; 2019 Aug; 24(4):420-428. PubMed ID: 31225974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates.
    Leung BM; Moraes C; Cavnar SP; Luker KE; Luker GD; Takayama S
    J Lab Autom; 2015 Apr; 20(2):138-45. PubMed ID: 25510473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated adherent human cell culture (mesenchymal stem cells).
    Thomas R; Ratcliffe E
    Methods Mol Biol; 2012; 806():393-406. PubMed ID: 22057466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new computer-controlled air-liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium.
    Aufderheide M; Förster C; Beschay M; Branscheid D; Emura M
    Exp Toxicol Pathol; 2016 Jan; 68(1):77-87. PubMed ID: 26507834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Three-dimensional cell cultures. Applications in basic science and biotechnology].
    Kitel R; Czarnecka J; Rusin A
    Postepy Biochem; 2013; 59(3):305-14. PubMed ID: 24364213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation of 3D cell culture using chemically defined hydrogels.
    Rimann M; Angres B; Patocchi-Tenzer I; Braum S; Graf-Hausner U
    J Lab Autom; 2014 Apr; 19(2):191-7. PubMed ID: 24132162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiautomatic growth analysis of multicellular tumor spheroids.
    Rodday B; Hirschhaeuser F; Walenta S; Mueller-Klieser W
    J Biomol Screen; 2011 Oct; 16(9):1119-24. PubMed ID: 21908797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human iPS Cell-Derived Patient Tissues and 3D Cell Culture Part 2: Spheroids, Organoids, and Disease Modeling.
    Eglen RM; Reisine T
    SLAS Technol; 2019 Feb; 24(1):18-27. PubMed ID: 30798678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment.
    Li X; Zhang X; Zhao S; Wang J; Liu G; Du Y
    Lab Chip; 2014 Feb; 14(3):471-81. PubMed ID: 24287736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture.
    Veelken C; Bakker GJ; Drell D; Friedl P
    Methods; 2017 Sep; 128():139-149. PubMed ID: 28739118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation.
    Yoshii Y; Waki A; Yoshida K; Kakezuka A; Kobayashi M; Namiki H; Kuroda Y; Kiyono Y; Yoshii H; Furukawa T; Asai T; Okazawa H; Gelovani JG; Fujibayashi Y
    Biomaterials; 2011 Sep; 32(26):6052-8. PubMed ID: 21640378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures.
    Ramachandran GK; Yeow CH
    Biol Res; 2017 Mar; 50(1):12. PubMed ID: 28302167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells.
    Takahashi Y; Hori Y; Yamamoto T; Urashima T; Ohara Y; Tanaka H
    Biosci Rep; 2015 May; 35(3):. PubMed ID: 26182370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
    Jeong MH; Kim I; Park K; Ku B; Lee DW; Park KR; Jeon SY; Kim JE
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated One-Step Production of Functional 3D Tumor Spheroids for High-Content Screening.
    Monjaret F; Fernandes M; Duchemin-Pelletier E; Argento A; Degot S; Young J
    J Lab Autom; 2016 Apr; 21(2):268-80. PubMed ID: 26385905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.