BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26203113)

  • 1. Adaptation and aftereffects of split-belt walking in cerebellar lesion patients.
    Hoogkamer W; Bruijn SM; Sunaert S; Swinnen SP; Van Calenbergh F; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1693-704. PubMed ID: 26203113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.
    Reisman DS; Wityk R; Silver K; Bastian AJ
    Brain; 2007 Jul; 130(Pt 7):1861-72. PubMed ID: 17405765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.
    Yokoyama H; Sato K; Ogawa T; Yamamoto SI; Nakazawa K; Kawashima N
    PLoS One; 2018; 13(4):e0194875. PubMed ID: 29694404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A marching-walking hybrid induces step length adaptation and transfers to natural walking.
    Long AW; Finley JM; Bastian AJ
    J Neurophysiol; 2015 Jun; 113(10):3905-14. PubMed ID: 25867742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of adaptation during prolonged split-belt locomotion in the intact and spinal cat.
    Kuczynski V; Telonio A; Thibaudier Y; Hurteau MF; Dambreville C; Desrochers E; Doelman A; Ross D; Frigon A
    J Physiol; 2017 Sep; 595(17):5987-6006. PubMed ID: 28643899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlimb coordination during locomotion: what can be adapted and stored?
    Reisman DS; Block HJ; Bastian AJ
    J Neurophysiol; 2005 Oct; 94(4):2403-15. PubMed ID: 15958603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.
    Eikema DJ; Chien JH; Stergiou N; Myers SA; Scott-Pandorf MM; Bloomberg JJ; Mukherjee M
    Exp Brain Res; 2016 Feb; 234(2):511-22. PubMed ID: 26525712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation.
    Sato S; Choi JT
    J Neurophysiol; 2019 Sep; 122(3):1097-1109. PubMed ID: 31339832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persons with essential tremor can adapt to new walking patterns.
    Roper JA; Brinkerhoff SA; Harrison BR; Schmitt AC; Roemmich RT; Hass CJ
    J Neurophysiol; 2019 Oct; 122(4):1598-1605. PubMed ID: 31365318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the cerebellum in the control and adaptation of gait in health and disease.
    Thach WT; Bastian AJ
    Prog Brain Res; 2004; 143():353-66. PubMed ID: 14653179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of traumatic brain injury on locomotor adaptation.
    Vasudevan EV; Glass RN; Packel AT
    J Neurol Phys Ther; 2014 Jul; 38(3):172-82. PubMed ID: 24892766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait speed influences aftereffect size following locomotor adaptation, but only in certain environments.
    Hamzey RJ; Kirk EM; Vasudevan EV
    Exp Brain Res; 2016 Jun; 234(6):1479-90. PubMed ID: 26790424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
    Mukherjee M; Eikema DJ; Chien JH; Myers SA; Scott-Pandorf M; Bloomberg JJ; Stergiou N
    Exp Brain Res; 2015 Oct; 233(10):3005-12. PubMed ID: 26169104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of focal cerebellar lesions on the control and adaptation of gait.
    Ilg W; Giese MA; Gizewski ER; Schoch B; Timmann D
    Brain; 2008 Nov; 131(Pt 11):2913-27. PubMed ID: 18835866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split-belt locomotion in Parkinson's disease with and without freezing of gait.
    Nanhoe-Mahabier W; Snijders AH; Delval A; Weerdesteyn V; Duysens J; Overeem S; Bloem BR
    Neuroscience; 2013 Apr; 236():110-6. PubMed ID: 23370318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection and coordination of human locomotor forms following cerebellar damage.
    Earhart GM; Bastian AJ
    J Neurophysiol; 2001 Feb; 85(2):759-69. PubMed ID: 11160510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait symmetric adaptation: Comparing effects of implicit visual distortion versus split-belt treadmill on aftereffects of adapted step length symmetry.
    Chunduru P; Kim SJ; Lee H
    Hum Mov Sci; 2019 Aug; 66():186-197. PubMed ID: 31063927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.