These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 26203364)
1. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment. Ti C; Thomas GM; Ren Y; Zhang R; Wen Q; Liu Y Biomed Opt Express; 2015 Jul; 6(7):2325-36. PubMed ID: 26203364 [TBL] [Abstract][Full Text] [Related]
2. Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing. Liu Y; Yu M Opt Express; 2009 Aug; 17(16):13624-38. PubMed ID: 19654770 [TBL] [Abstract][Full Text] [Related]
3. Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. Zhao X; Zhao N; Shi Y; Xin H; Li B Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31973061 [TBL] [Abstract][Full Text] [Related]
4. Multiple traps created with an inclined dual-fiber system. Liu Y; Yu M Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409 [TBL] [Abstract][Full Text] [Related]
5. Subwavelength optical trapping with a fiber-based surface plasmonic lens. Liu Y; Stief F; Yu M Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277 [TBL] [Abstract][Full Text] [Related]
6. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System. Ti C; Ho-Thanh MT; Wen Q; Liu Y Sci Rep; 2017 Oct; 7(1):13168. PubMed ID: 29030571 [TBL] [Abstract][Full Text] [Related]
7. Optothermal Manipulations of Colloidal Particles and Living Cells. Lin L; Hill EH; Peng X; Zheng Y Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720 [TBL] [Abstract][Full Text] [Related]
15. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
16. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells. Chang YR; Hsu L; Chi S Appl Opt; 2006 Jun; 45(16):3885-92. PubMed ID: 16724154 [TBL] [Abstract][Full Text] [Related]
17. Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application. Wozniak A; van Mameren J; Ragona S Curr Pharm Biotechnol; 2009 Aug; 10(5):467-73. PubMed ID: 19689314 [TBL] [Abstract][Full Text] [Related]
18. Reliable and mobile all-fiber modular optical tweezers. Ti C; Shen Y; Ho Thanh MT; Wen Q; Liu Y Sci Rep; 2020 Nov; 10(1):20099. PubMed ID: 33208851 [TBL] [Abstract][Full Text] [Related]
19. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Nylk J; Kristensen MV; Mazilu M; Thayil AK; Mitchell CA; Campbell EC; Powis SJ; Gunn-Moore FJ; Dholakia K Biomed Opt Express; 2015 Apr; 6(4):1512-9. PubMed ID: 25909032 [TBL] [Abstract][Full Text] [Related]
20. Exploring cell and tissue mechanics with optical tweezers. Català-Castro F; Schäffer E; Krieg M J Cell Sci; 2022 Aug; 135(15):. PubMed ID: 35942913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]