These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2620347)
1. Factors of the shape change of human erythrocytes induced with lidocaine. Nishiguchi E; Manno S; Sasakura Y; Shindo J Cell Struct Funct; 1989 Oct; 14(5):569-77. PubMed ID: 2620347 [TBL] [Abstract][Full Text] [Related]
2. Requirement of cytoplasmic components for lidocaine-induced shape change in human erythrocytes. Nishiguchi E; Sindo J; Hamasaki N Biochim Biophys Acta; 1993 Mar; 1176(1-2):95-105. PubMed ID: 8452885 [TBL] [Abstract][Full Text] [Related]
3. Lidocaine action and conformational changes in cytoskeletal protein network in human red blood cells. Nishiguchi E; Hamada N; Shindo J Eur J Pharmacol; 1995 Nov; 286(1):1-8. PubMed ID: 8566145 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of the change in shape of human erythrocytes induced by lidocaine. Nishiguchi E; Ozono S; Takakuwa Y; Hamasaki N Cell Struct Funct; 1995 Feb; 20(1):71-9. PubMed ID: 7796469 [TBL] [Abstract][Full Text] [Related]
5. Involvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malarial parasite, Plasmodium falciparum. Olson JA; Kilejian A J Cell Biol; 1982 Dec; 95(3):757-62. PubMed ID: 6759513 [TBL] [Abstract][Full Text] [Related]
6. Reactions of the alkylating agent tris(2-chloroethyl)-amine with the erythrocyte membrane. Effects on shape changes of human erythrocytes and ghosts. Wildenauer DB; Reuther H; Remien J Biochim Biophys Acta; 1980 Dec; 603(1):101-16. PubMed ID: 7448181 [TBL] [Abstract][Full Text] [Related]
7. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability. Lux SE; John KM; Ukena TE J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286 [TBL] [Abstract][Full Text] [Related]
8. Two steps in ATP-dependent shape change of human erythrocyte ghosts. Jinbu Y; Nakao M; Otsuka M; Sato S Biochem Biophys Res Commun; 1983 Apr; 112(2):384-90. PubMed ID: 6601948 [TBL] [Abstract][Full Text] [Related]
9. Cytoplasmic pH and human erythrocyte shape. Gedde MM; Davis DK; Huestis WH Biophys J; 1997 Mar; 72(3):1234-46. PubMed ID: 9138569 [TBL] [Abstract][Full Text] [Related]
10. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes. Pestonjamasp KN; Mehta NG Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552 [TBL] [Abstract][Full Text] [Related]
11. Low pH induced shape changes and vesiculation of human erythrocytes. Gros M; Vrhovec S; Brumen M; Svetina S; Zeks B Gen Physiol Biophys; 1996 Apr; 15(2):145-63. PubMed ID: 8899418 [TBL] [Abstract][Full Text] [Related]
12. Induction of ATP depletion, intramembrane particle aggregation and exposure of membrane phospholipids in chicken erythrocytes by local anesthetics and tranquilizers. Gazitt Y; Loyter A; Ohad I Biochim Biophys Acta; 1977 Dec; 471(3):361-71. PubMed ID: 921988 [No Abstract] [Full Text] [Related]
13. Analysis of erythrocyte membrane proteins from dystrophic hamsters. Pimplikar SW; Malhotra SK FEBS Lett; 1983 May; 156(1):141-4. PubMed ID: 6852249 [TBL] [Abstract][Full Text] [Related]
14. Cytoskeletal proteolysis during calcium-induced morphological transitions of human erythrocytes. Whatmore JL; Tang EK; Hickman JA Exp Cell Res; 1992 Jun; 200(2):316-25. PubMed ID: 1572399 [TBL] [Abstract][Full Text] [Related]
15. [Inverse pH-dependent shape changes of erythrocytes in the presence of albumin]. Scheven C; Halbhuber KJ; Fröber R; Gummelt M; Geyer G Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):454-8. PubMed ID: 6159282 [TBL] [Abstract][Full Text] [Related]
16. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. Sheetz MP; Singer SJ J Cell Biol; 1977 Jun; 73(3):638-46. PubMed ID: 873993 [TBL] [Abstract][Full Text] [Related]
17. Production and characterization of Escherichia coli enterohemolysin and its effects on the structure of erythrocyte membranes. Jürgens D; Ozel M; Takaisi-Kikuni NB Cell Biol Int; 2002; 26(2):175-86. PubMed ID: 11846447 [TBL] [Abstract][Full Text] [Related]
18. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness. Haest CW; Fischer TM; Plasa G; Deuticke B Blood Cells; 1980; 6(3):539-53. PubMed ID: 7397401 [TBL] [Abstract][Full Text] [Related]
19. [Study of the relationship between shape and aggregation change in human erythrocytes]. Sheremet'ev IuA; Popovicheva AN; Egorikhina MN; Levin GIa Biofizika; 2013; 58(2):264-8. PubMed ID: 23755552 [TBL] [Abstract][Full Text] [Related]
20. [Effect of chlorpromazine, lidocaine and procaine on the electrophoretic mobility of rat erythrocytes]. Vasileva A; Stoev S; Petrova R; Radonova N Eksp Med Morfol; 1980; 19(4):224-8. PubMed ID: 7460810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]