BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26203626)

  • 1. A Data-Driven Evolutionary Algorithm for Mapping Multibasin Protein Energy Landscapes.
    Clausen R; Shehu A
    J Comput Biol; 2015 Sep; 22(9):844-60. PubMed ID: 26203626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Optimization to Mapping: An Evolutionary Algorithm for Protein Energy Landscapes.
    Sapin E; De Jong KA; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):719-731. PubMed ID: 28113951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm.
    Clausen R; Ma B; Nussinov R; Shehu A
    PLoS Comput Biol; 2015 Sep; 11(9):e1004470. PubMed ID: 26325505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing energy landscape maps and structural excursions of proteins.
    Sapin E; Carr DB; De Jong KA; Shehu A
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):546. PubMed ID: 27535545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Energy Landscapes of Peptides Using a Combination of Stochastic Algorithms.
    Devaurs D; Molloy K; Vaisset M; Shehu A; Siméon T; Cortés J
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):545-52. PubMed ID: 25935043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From mutations to mechanisms and dysfunction via computation and mining of protein energy landscapes.
    Qiao W; Akhter N; Fang X; Maximova T; Plaku E; Shehu A
    BMC Genomics; 2018 Sep; 19(Suppl 7):671. PubMed ID: 30255791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure.
    Waldispühl J; Ponty Y
    J Comput Biol; 2011 Nov; 18(11):1465-79. PubMed ID: 22035326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy landscapes.
    Roth CA; Dreyfus T; Robert CH; Cazals F
    J Comput Chem; 2016 Mar; 37(8):739-52. PubMed ID: 26714673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A General, Adaptive, Roadmap-Based Algorithm for Protein Motion Computation.
    Molloy K; Shehu A
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):158-65. PubMed ID: 26863668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A balance-evolution artificial bee colony algorithm for protein structure optimization based on a three-dimensional AB off-lattice model.
    Li B; Chiong R; Lin M
    Comput Biol Chem; 2015 Feb; 54():1-12. PubMed ID: 25463349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm.
    Maximova T; Plaku E; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1783-1796. PubMed ID: 27411226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of sequence-reactivity space for protein-protein interactions.
    Li J; Yi Z; Laskowski MC; Laskowski M; Bailey-Kellogg C
    Proteins; 2005 Feb; 58(3):661-71. PubMed ID: 15624216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuating dependence on structural data in computing protein energy landscapes.
    Morris D; Maximova T; Plaku E; Shehu A
    BMC Bioinformatics; 2019 Jun; 20(Suppl 11):280. PubMed ID: 31167640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the fitness landscapes of lattice proteins.
    Renner A; Bornberg-Bauer E
    Pac Symp Biocomput; 1997; ():361-72. PubMed ID: 9390306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Organizations of Protein Energy Landscapes: An Application on Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Hassan L; Rajabi Z; Barbará D; Shehu A
    Methods Mol Biol; 2019; 1958():147-171. PubMed ID: 30945218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient conformational sampling method for homology modeling.
    Han R; Leo-Macias A; Zerbino D; Bastolla U; Contreras-Moreira B; Ortiz AR
    Proteins; 2008 Apr; 71(1):175-88. PubMed ID: 17985353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model.
    Liu J; Li G; Yu J; Yao Y
    Comput Biol Chem; 2012 Jun; 38():17-26. PubMed ID: 22551826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.