BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26203649)

  • 1. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta.
    Yang J; Wang R; Liu B; Xue Q; Zhong M; Zeng H; Zhang H
    Mutat Res; 2015 Sep; 779():134-43. PubMed ID: 26203649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta.
    Liu B; Xue Q; Gu S; Wang W; Chen J; Li Y; Wang C; Zhang H
    Arch Biochem Biophys; 2016 Apr; 596():99-107. PubMed ID: 26976707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosine by the catalytic core of yeast DNA polymerase η.
    Xue Q; Zhong M; Liu B; Tang Y; Wei Z; Guengerich FP; Zhang H
    Biochimie; 2016 Feb; 121():161-9. PubMed ID: 26700143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error-prone bypass of O
    Gu S; Xiong J; Shi Y; You J; Zou Z; Liu X; Zhang H
    DNA Repair (Amst); 2017 Sep; 57():35-44. PubMed ID: 28651167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η.
    Patra A; Zhang Q; Lei L; Su Y; Egli M; Guengerich FP
    J Biol Chem; 2015 Mar; 290(13):8028-38. PubMed ID: 25666608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bypass of an Abasic Site via the A-Rule by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1.
    Liu X; Zou X; Li H; Zou Z; Yang J; Wang C; Wu S; Zhang H
    Chem Res Toxicol; 2018 Jan; 31(1):58-65. PubMed ID: 29183115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of translesion DNA synthesis catalyzed by the bacteriophage T4 exonuclease-deficient DNA polymerase.
    Berdis AJ
    Biochemistry; 2001 Jun; 40(24):7180-91. PubMed ID: 11401565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inefficient bypass of an abasic site by DNA polymerase eta.
    Haracska L; Washington MT; Prakash S; Prakash L
    J Biol Chem; 2001 Mar; 276(9):6861-6. PubMed ID: 11106652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases α, δ, η, ι, κ, and REV1.
    Choi JY; Lim S; Kim EJ; Jo A; Guengerich FP
    J Mol Biol; 2010 Nov; 404(1):34-44. PubMed ID: 20888339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adduct size limits efficient and error-free bypass across bulky N2-guanine DNA lesions by human DNA polymerase eta.
    Choi JY; Guengerich FP
    J Mol Biol; 2005 Sep; 352(1):72-90. PubMed ID: 16061253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast pol eta holds a cis-syn thymine dimer loosely in the active site during elongation opposite the 3'-T of the dimer, but tightly opposite the 5'-T.
    Sun L; Zhang K; Zhou L; Hohler P; Kool ET; Yuan F; Wang Z; Taylor JS
    Biochemistry; 2003 Aug; 42(31):9431-7. PubMed ID: 12899630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η.
    Boldinova EO; Ignatov A; Kulbachinskiy A; Makarova AV
    Sci Rep; 2018 Jul; 8(1):10314. PubMed ID: 29985422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis of miscoding of the DNA adduct N2,3-ethenoguanine by human Y-family DNA polymerases.
    Zhao L; Pence MG; Christov PP; Wawrzak Z; Choi JY; Rizzo CJ; Egli M; Guengerich FP
    J Biol Chem; 2012 Oct; 287(42):35516-35526. PubMed ID: 22910910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases.
    Xu W; Ouellette A; Ghosh S; O'Neill TC; Greenberg MM; Zhao L
    Biochemistry; 2015 Dec; 54(50):7409-22. PubMed ID: 26626537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translesion synthesis across O6-alkylguanine DNA adducts by recombinant human DNA polymerases.
    Choi JY; Chowdhury G; Zang H; Angel KC; Vu CC; Peterson LA; Guengerich FP
    J Biol Chem; 2006 Dec; 281(50):38244-56. PubMed ID: 17050527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetically modified N
    Du K; Zhang X; Zou Z; Li B; Gu S; Zhang S; Qu X; Ling Y; Zhang H
    DNA Repair (Amst); 2019 Jun; 78():81-90. PubMed ID: 30991231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.