BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 26203909)

  • 1. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.
    Arif M; Kattan A
    PLoS One; 2015; 10(7):e0130851. PubMed ID: 26203909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of physical activity types using triaxial accelerometers.
    Skotte J; Korshøj M; Kristiansen J; Hanisch C; Holtermann A
    J Phys Act Health; 2014 Jan; 11(1):76-84. PubMed ID: 23249722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of physical activities based on body-segments coordination.
    Fradet L; Marin F
    Comput Biol Med; 2016 Sep; 76():134-42. PubMed ID: 27441831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Registration and Analysis of Acceleration Data to Recognize Physical Activity.
    Kołodziej M; Majkowski A; Tarnowski P; Rak RJ; Gebert D; Sawicki D
    J Healthc Eng; 2019; 2019():9497151. PubMed ID: 30944719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.
    Wundersitz DW; Gastin PB; Richter C; Robertson SJ; Netto KJ
    Eur J Sport Sci; 2015; 15(5):382-90. PubMed ID: 25196466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.
    Naranjo-Hernández D; Roa LM; Reina-Tosina J; Estudillo-Valderrama MÁ
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3177-84. PubMed ID: 23086195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing from offline to online activity recognition with wearable sensors.
    Ermes M; Parkka J; Cluitmans L
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4451-4. PubMed ID: 19163702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical Activity Classification for Elderly People in Free-Living Conditions.
    Awais M; Chiari L; Ihlen EAF; Helbostad JL; Palmerini L
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):197-207. PubMed ID: 29994291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study.
    Awais M; Palmerini L; Bourke AK; Ihlen EA; Helbostad JL; Chiari L
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive comparison of simple step counting techniques using wrist- and ankle-mounted accelerometer and gyroscope signals.
    Rhudy MB; Mahoney JM
    J Med Eng Technol; 2018 Apr; 42(3):236-243. PubMed ID: 29846134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of gait patterns in the time-frequency domain.
    Nyan MN; Tay FE; Seah KH; Sitoh YY
    J Biomech; 2006; 39(14):2647-56. PubMed ID: 16212968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity classification based on inertial and barometric pressure sensors at different anatomical locations.
    Moncada-Torres A; Leuenberger K; Gonzenbach R; Luft A; Gassert R
    Physiol Meas; 2014 Jul; 35(7):1245-63. PubMed ID: 24853451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.