These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 26204251)
1. Synthesis of functional xLayMn/KIT-6 and features in hot coal gas desulphurization. Xia H; Zhang F; Zhang Z; Liu B Phys Chem Chem Phys; 2015 Aug; 17(32):20667-76. PubMed ID: 26204251 [TBL] [Abstract][Full Text] [Related]
2. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas. Zhang FM; Liu BS; Zhang Y; Guo YH; Wan ZY; Subhan F J Hazard Mater; 2012 Sep; 233-234():219-27. PubMed ID: 22835768 [TBL] [Abstract][Full Text] [Related]
3. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization. Zhang Y; Liu BS; Zhang FM; Zhang ZF J Hazard Mater; 2013 Mar; 248-249():81-8. PubMed ID: 23337625 [TBL] [Abstract][Full Text] [Related]
4. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization. Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892 [TBL] [Abstract][Full Text] [Related]
5. High H Xia H; Liu B J Hazard Mater; 2017 Feb; 324(Pt B):281-290. PubMed ID: 27810326 [TBL] [Abstract][Full Text] [Related]
6. Probing mesoporous character, desulfurization capability and kinetic mechanism of synergistic stabilizing sorbent Ca Liu Q; Liu B; Liu Q; Guo S; Wu X J Colloid Interface Sci; 2021 Apr; 587():743-754. PubMed ID: 33234310 [TBL] [Abstract][Full Text] [Related]
7. Lattice substitution and desulfurization kinetic analysis of Zn-based spinel sorbents loading onto porous silicoaluminophosphate zeolites. Liu Q; Liu B; Liu Q; Xu R; Xia H J Hazard Mater; 2020 Feb; 383():121151. PubMed ID: 31678744 [TBL] [Abstract][Full Text] [Related]
8. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289 [TBL] [Abstract][Full Text] [Related]
9. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents. Subhan F; Liu BS; Zhang QL; Wang WS J Hazard Mater; 2012 Nov; 239-240():370-80. PubMed ID: 23022413 [TBL] [Abstract][Full Text] [Related]
10. Effect of a Support on the Properties of Zinc Oxide Based Sorbents. Chomiak M; Szyja BM; Jędrysiak M; Trawczyński J Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010039 [TBL] [Abstract][Full Text] [Related]
11. Sulphur isotope compositions of components of coal and S-isotope fractionation during its combustion and flue gas desulphurization. Derda M; Chmielewski AG; Licki J Isotopes Environ Health Stud; 2007 Mar; 43(1):57-63. PubMed ID: 17454273 [TBL] [Abstract][Full Text] [Related]
12. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, Operando studies. Dhage P; Samokhvalov A; Repala D; Duin EC; Tatarchuk BJ Phys Chem Chem Phys; 2011 Feb; 13(6):2179-87. PubMed ID: 21132188 [TBL] [Abstract][Full Text] [Related]
13. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas. Li D; Han J; Han L; Wang J; Chang L J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999 [TBL] [Abstract][Full Text] [Related]
14. Effect of lignite as support precursor on deep desulfurization performance of semicoke supported zinc oxide sorbent in hot coal gas. Li T; Ren X; Bao L; Wang M; Bao W; Chang L RSC Adv; 2020 Mar; 10(22):12780-12787. PubMed ID: 35492103 [TBL] [Abstract][Full Text] [Related]
15. Poly(amide-imide)/silica supported PEI hollow fiber sorbents for postcombustion CO(2) capture by RTSA. Labreche Y; Fan Y; Rezaei F; Lively RP; Jones CW; Koros WJ ACS Appl Mater Interfaces; 2014 Nov; 6(21):19336-46. PubMed ID: 25275334 [TBL] [Abstract][Full Text] [Related]
16. A study of Zn-Mn based sorbent for the high-temperature removal of H2S from coal-derived gas. Ko TH; Chu H; Liou YJ J Hazard Mater; 2007 Aug; 147(1-2):334-41. PubMed ID: 17293040 [TBL] [Abstract][Full Text] [Related]
17. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents. Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780 [TBL] [Abstract][Full Text] [Related]
18. Facile preparation of ordered mesoporous MnCo2O4 for low-temperature selective catalytic reduction of NO with NH3. Qiu M; Zhan S; Yu H; Zhu D; Wang S Nanoscale; 2015 Feb; 7(6):2568-77. PubMed ID: 25578309 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional ultralarge-pore ia3d mesoporous silica with various pore diameters and their application in biomolecule immobilization. Vinu A; Gokulakrishnan N; Balasubramanian VV; Alam S; Kapoor MP; Ariga K; Mori T Chemistry; 2008; 14(36):11529-38. PubMed ID: 19006167 [TBL] [Abstract][Full Text] [Related]
20. Desulphurization of coal via low temperature atmospheric alkaline oxidation. Liu K; Yang J; Jia J; Wang Y Chemosphere; 2008 Mar; 71(1):183-8. PubMed ID: 18022211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]