BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26204477)

  • 1. Comparison of analytic methods for quantitative real-time polymerase chain reaction data.
    Chen P; Huang X
    J Comput Biol; 2015 Nov; 22(11):988-96. PubMed ID: 26204477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for quantitative real-time polymerase chain reaction data analysis.
    Rao X; Lai D; Huang X
    J Comput Biol; 2013 Sep; 20(9):703-11. PubMed ID: 23841653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fixed-point algorithm for estimating amplification efficiency from a polymerase chain reaction dilution series.
    Jones ME; Mayne GC; Wang T; Watson DI; Hussey DJ
    BMC Bioinformatics; 2014 Dec; 15(1):372. PubMed ID: 25492416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing real-time quantitative polymerase chain reaction analysis methods for precision, linearity, and accuracy of estimating amplification efficiency.
    Tellinghuisen J; Spiess AN
    Anal Biochem; 2014 Mar; 449():76-82. PubMed ID: 24365068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
    Cobbs G
    BMC Bioinformatics; 2012 Aug; 13():203. PubMed ID: 22897900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel data processing method CyC* for quantitative real time polymerase chain reaction minimizes cumulative error.
    Zhang L; Dong R; Wei S; Zhou HC; Zhang MX; Alagarsamy K
    PLoS One; 2019; 14(6):e0218159. PubMed ID: 31185064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pairwise efficiency: a new mathematical approach to qPCR data analysis increases the precision of the calibration curve assay.
    Panina Y; Germond A; David BG; Watanabe TM
    BMC Bioinformatics; 2019 May; 20(1):295. PubMed ID: 31146686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.
    Hui Y; Wu Z; Qin Z; Zhu L; Liang J; Li X; Fu H; Feng S; Yu J; He X; Lu W; Xiao W; Wu Q; Zhang B; Zhao W
    Virol Sin; 2018 Jun; 33(3):270-277. PubMed ID: 29931514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR.
    Rutledge RG; Stewart D
    BMC Biotechnol; 2008 May; 8():47. PubMed ID: 18466619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of smoothing on parameter estimation in quantitative DNA amplification experiments.
    Spiess AN; Deutschmann C; Burdukiewicz M; Himmelreich R; Klat K; Schierack P; Rödiger S
    Clin Chem; 2015 Feb; 61(2):379-88. PubMed ID: 25477537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical uncertainty and its propagation in the analysis of quantitative polymerase chain reaction data: comparison of methods.
    Tellinghuisen J; Spiess AN
    Anal Biochem; 2014 Nov; 464():94-102. PubMed ID: 24991688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Analysis of Periodontal Pathogens Using Real-Time Polymerase Chain Reaction (PCR).
    Marin MJ; Figuero E; Herrera D; Sanz M
    Methods Mol Biol; 2017; 1537():191-202. PubMed ID: 27924595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and Normalization of Real-Time Polymerase Chain Reaction (PCR) Experimental Data.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2018 Oct; 2018(10):. PubMed ID: 30275081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of recombinase polymerase amplification in the detection of
    Jin XJ; Gong YL; Yang L; Mo BH; Peng YZ; He P; Zhao JN; Li XL
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):233-239. PubMed ID: 29690742
    [No Abstract]   [Full Text] [Related]  

  • 15. A comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time qPCR with flow cytometry in characterizing human T cells in peripheral blood.
    Wiencke JK; Bracci PM; Hsuang G; Zheng S; Hansen H; Wrensch MR; Rice T; Eliot M; Kelsey KT
    Epigenetics; 2014 Oct; 9(10):1360-5. PubMed ID: 25437051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Droplet Digital PCR and Real Time PCR Method for HBV DNA Quantification.
    Wongjitrat C; Horthongkham N; Sutthent R; Srisurapanon S
    J Med Assoc Thai; 2015 Oct; 98 Suppl 9():S140-5. PubMed ID: 26817223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of artifact bias from qPCR results using DNA melting curve analysis.
    Ruijter JM; Ruiz-Villalba A; van den Hoff AJJ; Gunst QD; Wittwer CT; van den Hoff MJB
    FASEB J; 2019 Dec; 33(12):14542-14555. PubMed ID: 31682470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiling by real-time quantitative polymerase chain reaction (RT-qPCR).
    Lech M; Anders HJ
    Methods Mol Biol; 2014; 1169():133-42. PubMed ID: 24957236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. qPCR data analysis: Better results through iconoclasm.
    Tellinghuisen J; Spiess AN
    Biomol Detect Quantif; 2019 Mar; 17():100084. PubMed ID: 31194178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.