These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 26204559)

  • 21. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Dynamics Simulations and Theoretical Model for Engineering Tensile Properties of Single-and Multi-Walled Carbon Nanotubes.
    Shirasu K; Kitayama S; Liu F; Yamamoto G; Hashida T
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics analysis on buckling of defective carbon nanotubes.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2010 Sep; 22(34):345301. PubMed ID: 21403253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective reinforcement in carbon nanotube-polymer composites.
    Wang W; Ciselli P; Kuznetsov E; Peijs T; Barber AH
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1870):1613-26. PubMed ID: 18192168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tight-binding molecular dynamics study of the role of defects on carbon nanotube moduli and failure.
    Haskins RW; Maier RS; Ebeling RM; Marsh CP; Majure DL; Bednar AJ; Welch CR; Barker BC; Wu DT
    J Chem Phys; 2007 Aug; 127(7):074708. PubMed ID: 17718628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical properties of multi-walled beryllium-oxide nanotubes: a molecular dynamics simulation study.
    Rostamiyan Y; Shahab N; Spitas C; Hamed Mashhadzadeh A
    J Mol Model; 2022 Sep; 28(10):300. PubMed ID: 36066685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.
    Rouhi S; Alizadeh Y; Ansari R
    J Mol Model; 2016 Jan; 22(1):41. PubMed ID: 26791535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations.
    Cornwell CF; Welch CR
    J Chem Phys; 2011 May; 134(20):204708. PubMed ID: 21639468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tensile properties of millimeter-long multi-walled carbon nanotubes.
    Kim HI; Wang M; Lee SK; Kang J; Nam JD; Ci L; Suhr J
    Sci Rep; 2017 Aug; 7(1):9512. PubMed ID: 28842673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of single-wall carbon nanotubes on mechanical property of chondrocytes.
    Dulińska-Molak I; Mao H; Kawazoe N; Chen G
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2459-65. PubMed ID: 24745247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of atomic vacancies and temperature on the tensile properties of single-walled MoS
    Xiong QL; Zhang J; Xiao C; Li ZH
    Phys Chem Chem Phys; 2017 Aug; 19(30):19948-19958. PubMed ID: 28722056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Industrial-Graded Epoxy Nanocomposites with Mechanically Dispersed Multi-Walled Carbon Nanotubes: Static and Damping Properties.
    Giovannelli A; Di Maio D; Scarpa F
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29064400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suspended carbon nanotube nanocomposite beams with a high mechanical strength via layer-by-layer nano-self-assembly.
    Lee D; Cui T
    Nanotechnology; 2011 Apr; 22(16):165601. PubMed ID: 21393826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the uncertainties in the constitutive behavior of carbon nanotube/cement composites.
    Chan LY; Andrawes B
    Sci Technol Adv Mater; 2009 Aug; 10(4):045007. PubMed ID: 27877307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for the strength of yarn-like carbon nanotube fibers.
    Vilatela JJ; Elliott JA; Windle AH
    ACS Nano; 2011 Mar; 5(3):1921-7. PubMed ID: 21348503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning carbon nanotube assembly for flexible, strong and conductive films.
    Wang Y; Li M; Gu Y; Zhang X; Wang S; Li Q; Zhang Z
    Nanoscale; 2015 Feb; 7(7):3060-6. PubMed ID: 25607989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.
    Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the mechanical behavior of WS2 nanotubes under axial tension and compression.
    Kaplan-Ashiri I; Cohen SR; Gartsman K; Ivanovskaya V; Heine T; Seifert G; Wiesel I; Wagner HD; Tenne R
    Proc Natl Acad Sci U S A; 2006 Jan; 103(3):523-8. PubMed ID: 16407141
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates.
    Xiao J; Ryu SY; Huang Y; Hwang KC; Paik U; Rogers JA
    Nanotechnology; 2010 Feb; 21(8):85708. PubMed ID: 20097981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.