BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26205151)

  • 1. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.
    Cheng WH; Huang KY; Huang PJ; Hsu JH; Fang YK; Chiu CH; Tang P
    Parasit Vectors; 2015 Jul; 8():393. PubMed ID: 26205151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein cysteine S-nitrosylation provides reducing power by enhancing lactate dehydrogenase activity in Trichomonas vaginalis under iron deficiency.
    Cheng WH; Huang KY; Ong SC; Ku FM; Huang PJ; Lee CC; Yeh YM; Lin R; Chiu CH; Tang P
    Parasit Vectors; 2020 Sep; 13(1):477. PubMed ID: 32948226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trichomonas vaginalis NTPDase inhibited by lycorine modulates the parasite-neutrophil interaction.
    Petró-Silveira B; Rigo GV; da Silva Trentin D; Macedo AJ; Sauer E; de Oliveira Alves E; Tallini LR; Garcia SC; de Souza Borges W; Zuanazzi JÂS; Tasca T
    Parasitol Res; 2020 Aug; 119(8):2587-2595. PubMed ID: 32524267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 20S Proteasome as a Drug Target in Trichomonas vaginalis.
    O'Donoghue AJ; Bibo-Verdugo B; Miyamoto Y; Wang SC; Yang JZ; Zuill DE; Matsuka S; Jiang Z; Almaliti J; Caffrey CR; Gerwick WH; Eckmann L
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31451503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel insights into the molecular events linking to cell death induced by tetracycline in the amitochondriate protozoan Trichomonas vaginalis.
    Huang KY; Ku FM; Cheng WH; Lee CC; Huang PJ; Chu LJ; Cheng CC; Fang YK; Wu HH; Tang P
    Antimicrob Agents Chemother; 2015 Nov; 59(11):6891-903. PubMed ID: 26303799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nitric oxide as an effector of macrophage-mediated cytotoxicity against Trichomonas vaginalis.
    Park GC; Ryu JS; Min DY
    Korean J Parasitol; 1997 Sep; 35(3):189-95. PubMed ID: 9335184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis.
    Huang KY; Chen YY; Fang YK; Cheng WH; Cheng CC; Chen YC; Wu TE; Ku FM; Chen SC; Lin R; Tang P
    Biochim Biophys Acta; 2014 Jan; 1840(1):53-64. PubMed ID: 23958562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global survey of miRNAs and tRNA-derived small RNAs from the human parasitic protist Trichomonas vaginalis.
    Wang ZS; Zhou HC; Wei CY; Wang ZH; Hao X; Zhang LH; Li JZ; Wang ZL; Wang H
    Parasit Vectors; 2021 Jan; 14(1):87. PubMed ID: 33514387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.
    Song HO
    Korean J Parasitol; 2016 Feb; 54(1):71-4. PubMed ID: 26951982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.
    Figueroa-Angulo EE; Calla-Choque JS; Mancilla-Olea MI; Arroyo R
    Biomolecules; 2015 Nov; 5(4):3354-95. PubMed ID: 26703754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proinflammatory cytokine and nitric oxide production by human macrophages stimulated with Trichomonas vaginalis.
    Han IH; Goo SY; Park SJ; Hwang SJ; Kim YS; Yang MS; Ahn MH; Ryu JS
    Korean J Parasitol; 2009 Sep; 47(3):205-12. PubMed ID: 19724692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Targets Implicated in the Antiparasitic and Anti-Inflammatory Activity of the Phytochemical Curcumin in Trichomoniasis.
    Mallo N; Lamas J; Sueiro RA; Leiro JM
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202696
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Chen YP; Twu O; Johnson PJ
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946046
    [No Abstract]   [Full Text] [Related]  

  • 14. Trichomonas vaginalis triggers the release of THP-1 extracellular traps.
    Fei L; Zhengkai W; Weina J; Lili C; Yuhang G; Zhengtao Y; Jianhua L; Biao Y; Xichen Z; Pengtao G
    Parasitol Res; 2019 Jan; 118(1):267-274. PubMed ID: 30426227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Trichomonas vaginalis activity of chalcone and amino-analogues.
    Trein MR; Rodrigues E Oliveira L; Rigo GV; Garcia MAR; Petro-Silveira B; da Silva Trentin D; Macedo AJ; Regasini LO; Tasca T
    Parasitol Res; 2019 Feb; 118(2):607-615. PubMed ID: 30535524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel surface protein of Trichomonas vaginalis is regulated independently by low iron and contact with vaginal epithelial cells.
    Mundodi V; Kucknoor AS; Chang TH; Alderete JF
    BMC Microbiol; 2006 Jan; 6():6. PubMed ID: 16448556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biology of Trichomonas vaginalis in the light of urogenital tract infection.
    Kusdian G; Gould SB
    Mol Biochem Parasitol; 2014 Dec; 198(2):92-9. PubMed ID: 25677793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release.
    Griffon B; Cillard J; Chevanne M; Morel I; Cillard P; Sergent O
    Hepatology; 1998 Nov; 28(5):1300-8. PubMed ID: 9794915
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Quan JH; Kang BH; Yang JB; Rhee YE; Noh HT; Choi IW; Cha GH; Yuk JM; Lee YH
    Biomed Res Int; 2017; 2017():3904870. PubMed ID: 29410962
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogenosomal activity of Trichomonas vaginalis cultivated under different iron conditions.
    Kim YS; Song HO; Choi IH; Park SJ; Ryu JS
    Korean J Parasitol; 2006 Dec; 44(4):373-8. PubMed ID: 17170580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.