BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 26205503)

  • 1. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae).
    Matsubara K; Uno Y; Srikulnath K; Seki R; Nishida C; Matsuda Y
    Chromosoma; 2015 Dec; 124(4):529-39. PubMed ID: 26205503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles.
    Thongchum R; Singchat W; Laopichienpong N; Tawichasri P; Kraichak E; Prakhongcheep O; Sillapaprayoon S; Muangmai N; Baicharoen S; Suntrarachun S; Chanhome L; Peyachoknagul S; Srikulnath K
    Sci Rep; 2019 Oct; 9(1):15459. PubMed ID: 31664097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Karyotype reorganization with conserved genomic compartmentalization in dot-shaped microchromosomes in the Japanese mountain hawk-eagle (Nisaetus nipalensis orientalis, Accipitridae).
    Nishida C; Ishijima J; Ishishita S; Yamada K; Griffin DK; Yamazaki T; Matsuda Y
    Cytogenet Genome Res; 2013; 141(4):284-94. PubMed ID: 23838459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome size-correlated and chromosome size-uncorrelated homogenization of centromeric repetitive sequences in New World quails.
    Ishishita S; Tsuruta Y; Uno Y; Nakamura A; Nishida C; Griffin DK; Tsudzuki M; Ono T; Matsuda Y
    Chromosome Res; 2014 Apr; 22(1):15-34. PubMed ID: 24532185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia).
    Kawagoshi T; Nishida C; Ota H; Kumazawa Y; Endo H; Matsuda Y
    Chromosome Res; 2008; 16(8):1119-32. PubMed ID: 18941916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species.
    Uno Y; Nishida C; Hata A; Ishishita S; Matsuda Y
    PLoS One; 2019; 14(3):e0214028. PubMed ID: 30913221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota).
    Chaiprasertsri N; Uno Y; Peyachoknagul S; Prakhongcheep O; Baicharoen S; Charernsuk S; Nishida C; Matsuda Y; Koga A; Srikulnath K
    J Hered; 2013; 104(6):798-806. PubMed ID: 24129994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the A and B chromosomes of the Korean field mouse (Apodemus peninsulae, Muridae, Rodentia).
    Matsubara K; Yamada K; Umemoto S; Tsuchiya K; Ikeda N; Nishida C; Chijiwa T; Moriwaki K; Matsuda Y
    Chromosome Res; 2008; 16(7):1013-26. PubMed ID: 18949567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergence of repetitive DNA sequences in the heterochromatin of medaka fishes: Molecular cytogenetic characterization of constitutive heterochromatin in two medaka species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes).
    Uno Y; Asada Y; Nishida C; Takehana Y; Sakaizumi M; Matsuda Y
    Cytogenet Genome Res; 2013; 141(2-3):212-26. PubMed ID: 24028862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes.
    Matsubara K; Tarui H; Toriba M; Yamada K; Nishida-Umehara C; Agata K; Matsuda Y
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18190-5. PubMed ID: 17110446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetic Analysis of the Members of the Snake Genera
    Charvát T; Augstenová B; Frynta D; Kratochvíl L; Rovatsos M
    Genes (Basel); 2022 Jul; 13(7):. PubMed ID: 35885968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Cytogenetic Characterization of C-Band-Positive Heterochromatin of the Greater Long-Tailed Hamster (Tscherskia triton, Cricetinae).
    Kamimura E; Uno Y; Yamada K; Nishida C; Matsuda Y
    Cytogenet Genome Res; 2022; 162(6):323-333. PubMed ID: 36535261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytogenetic Analysis Did Not Reveal Differentiated Sex Chromosomes in Ten Species of Boas and Pythons (Reptilia: Serpentes).
    Augstenová B; Mazzoleni S; Kostmann A; Altmanová M; Frynta D; Kratochvíl L; Rovatsos M
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31731798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic chromosome reorganization in the osprey ( Pandion haliaetus , Pandionidae, Falconiformes): relationship between chromosome size and the chromosomal distribution of centromeric repetitive DNA sequences.
    Nishida C; Ishishita S; Yamada K; Griffin DK; Matsuda Y
    Cytogenet Genome Res; 2014; 142(3):179-89. PubMed ID: 24513810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences.
    Saito Y; Edpalina RR; Abe S
    Genetica; 2007 Oct; 131(2):157-66. PubMed ID: 17180439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes.
    Castoe TA; de Koning JA; Hall KT; Yokoyama KD; Gu W; Smith EN; Feschotte C; Uetz P; Ray DA; Dobry J; Bogden R; Mackessy SP; Bronikowski AM; Warren WC; Secor SM; Pollock DD
    Genome Biol; 2011 Jul; 12(7):406. PubMed ID: 21801464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the Karyotype of Neotropical Boid Snakes Really Conserved? Cytotaxonomy, Chromosomal Rearrangements and Karyotype Organization in the Boidae Family.
    Viana PF; Ribeiro LB; Souza GM; Chalkidis Hde M; Gross MC; Feldberg E
    PLoS One; 2016; 11(8):e0160274. PubMed ID: 27494409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species.
    Samoluk SS; Robledo G; Bertioli D; Seijo JG
    Mol Genet Genomics; 2017 Apr; 292(2):283-296. PubMed ID: 27838847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterochromatic DNA in Triturus (Amphibia, Urodela) II. A centromeric satellite DNA.
    Cremisi F; Vignali R; Batistoni R; Barsacchi G
    Chromosoma; 1988 Nov; 97(3):204-11. PubMed ID: 3219917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.