BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26206078)

  • 1. All-or-(N)One - an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci.
    Kutzner A; Pramanik S; Kim PS; Heese K
    Genomics; 2015 Nov; 106(5):278-85. PubMed ID: 26206078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive Functions: Human vs. Animal - 4:1 Advantage |-FAM72-SRGAP2-|.
    Ho NT; Kim PS; Kutzner A; Heese K
    J Mol Neurosci; 2017 Apr; 61(4):603-606. PubMed ID: 28255958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature.
    Rahane CS; Kutzner A; Heese K
    J Neurooncol; 2019 Jan; 141(1):57-70. PubMed ID: 30414097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2-FAM72-|.
    Ho NTT; Kutzner A; Heese K
    Biol Chem; 2017 Dec; 399(1):55-61. PubMed ID: 28822221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAM72, Glioblastoma Multiforme (GBM) and Beyond.
    Ho NTT; Rahane CS; Pramanik S; Kim PS; Kutzner A; Heese K
    Cancers (Basel); 2021 Mar; 13(5):. PubMed ID: 33804473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Adaptive evolution of the Homo mitochondrial genome].
    Maliarchuk BA
    Mol Biol (Mosk); 2011; 45(5):845-50. PubMed ID: 22393781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution.
    Eichler EE; Lu F; Shen Y; Antonacci R; Jurecic V; Doggett NA; Moyzis RK; Baldini A; Gibbs RA; Nelson DL
    Hum Mol Genet; 1996 Jul; 5(7):899-912. PubMed ID: 8817324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication.
    Dennis MY; Nuttle X; Sudmant PH; Antonacci F; Graves TA; Nefedov M; Rosenfeld JA; Sajjadian S; Malig M; Kotkiewicz H; Curry CJ; Shafer S; Shaffer LG; de Jong PJ; Wilson RK; Eichler EE
    Cell; 2012 May; 149(4):912-22. PubMed ID: 22559943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans.
    Rogers RL
    Mol Biol Evol; 2015 Dec; 32(12):3064-78. PubMed ID: 26399483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early infantile epileptic encephalopathy associated with the disrupted gene encoding Slit-Robo Rho GTPase activating protein 2 (SRGAP2).
    Saitsu H; Osaka H; Sugiyama S; Kurosawa K; Mizuguchi T; Nishiyama K; Nishimura A; Tsurusaki Y; Doi H; Miyake N; Harada N; Kato M; Matsumoto N
    Am J Med Genet A; 2012 Jan; 158A(1):199-205. PubMed ID: 22106086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PhaseDancer: a novel targeted assembler of segmental duplications unravels the complexity of the human chromosome 2 fusion going from 48 to 46 chromosomes in hominin evolution.
    Poszewiecka B; Gogolewski K; Karolak JA; Stankiewicz P; Gambin A
    Genome Biol; 2023 Sep; 24(1):205. PubMed ID: 37697406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neanderthal and Denisova tooth protein variants in present-day humans.
    Zanolli C; Hourset M; Esclassan R; Mollereau C
    PLoS One; 2017; 12(9):e0183802. PubMed ID: 28902892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain.
    Gunbin KV; Afonnikov DA; Kolchanov NA; Derevianko AP; Rogaev EI
    BMC Genomics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26693966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the neanderthal and denisova genetic data to understand the common MAPT 17q21 inversion in modern humans.
    Setó-Salvia N; Sánchez-Quinto F; Carbonell E; Lorenzo C; Comas D; Clarimón J
    Hum Biol; 2012 Dec; 84(6):633-40. PubMed ID: 23959642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cognitive ability of extinct hominins: bringing down the hierarchy using genomic evidences.
    Paixão-Côrtes VR; Viscardi LH; Salzano FM; Cátira Bortolini M; Hünemeier T
    Am J Hum Biol; 2013; 25(5):702-5. PubMed ID: 23907779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The status of Homo heidelbergensis (Schoetensack 1908).
    Stringer C
    Evol Anthropol; 2012 May; 21(3):101-7. PubMed ID: 22718477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma.
    Marko TA; Shamsan GA; Edwards EN; Hazelton PE; Rathe SK; Cornax I; Overn PR; Varshney J; Diessner BJ; Moriarity BS; O'Sullivan MG; Odde DJ; Largaespada DA
    Sci Rep; 2016 Dec; 6():39059. PubMed ID: 27966608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21-q22.
    Shiina T; Ando A; Suto Y; Kasai F; Shigenari A; Takishima N; Kikkawa E; Iwata K; Kuwano Y; Kitamura Y; Matsuzawa Y; Sano K; Nogami M; Kawata H; Li S; Fukuzumi Y; Yamazaki M; Tashiro H; Tamiya G; Kohda A; Okumura K; Ikemura T; Soeda E; Mizuki N; Kimura M; Bahram S; Inoko H
    Genome Res; 2001 May; 11(5):789-802. PubMed ID: 11337475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of human FCHSD1 and FCHSD2 genes in silico.
    Katoh M; Katoh M
    Int J Mol Med; 2004 May; 13(5):749-54. PubMed ID: 15067381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data.
    Perry GH; Kistler L; Kelaita MA; Sams AJ
    J Hum Evol; 2015 Feb; 79():55-63. PubMed ID: 25563409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.