BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26206098)

  • 41. Economic development influences on sediment-bound nitrogen and phosphorus accumulation of lakes in China.
    Ni Z; Wang S
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18561-73. PubMed ID: 26385856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trace metals in Antarctica related to climate change and increasing human impact.
    Bargagli R
    Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture.
    Meng T; Zhu MX; Ma WW; Gan ZX
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6460-6471. PubMed ID: 30623326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus accumulation during the ice-on season in macrophyte-dominated eutrophic lakes and its implications.
    Yang T; Zhang Y; Zhou T; Wang Y; Wang L; Yang J; Shang Y; Chen F; Hei P
    J Environ Manage; 2024 Jun; 360():121096. PubMed ID: 38761618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lake sedimentary evidence of phosphorus, iron and manganese mobilisation from intensively fertilised soils.
    Jordan P; Rippey B
    Water Res; 2003 Mar; 37(6):1426-32. PubMed ID: 12598206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diffusion flux of phosphorus nutrients at the sediment-water interface of the Ulansuhai Lake in northern China.
    Zhao S; Shi X; Li C; Zhang S; Sun B; Wu Y; Zhao S
    Water Sci Technol; 2017 Mar; 75(5-6):1455-1465. PubMed ID: 28333061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High sulfide production induced by algae decomposition and its potential stimulation to phosphorus mobility in sediment.
    Zhao Y; Zhang Z; Wang G; Li X; Ma J; Chen S; Deng H; Annalisa OH
    Sci Total Environ; 2019 Feb; 650(Pt 1):163-172. PubMed ID: 30196216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solving the problem at the source: Controlling Mn release at the sediment-water interface via hypolimnetic oxygenation.
    Bryant LD; Hsu-Kim H; Gantzer PA; Little JC
    Water Res; 2011 Dec; 45(19):6381-92. PubMed ID: 22000717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Features and influencing factors of nitrogen and phosphorus diffusive fluxes at the sediment-water interface of Erhai Lake.
    Zhao H; Zhang L; Wang S; Jiao L
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1933-1942. PubMed ID: 29103124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition.
    Han C; Ding S; Yao L; Shen Q; Zhu C; Wang Y; Xu D
    J Hazard Mater; 2015 Dec; 300():329-337. PubMed ID: 26207579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iron and manganese fluxes across the sediment-water interface in a drinking water reservoir.
    Krueger KM; Vavrus CE; Lofton ME; McClure RP; Gantzer P; Carey CC; Schreiber ME
    Water Res; 2020 Sep; 182():116003. PubMed ID: 32721701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. From macrophyte to algae: Differentiated dominant processes for internal phosphorus release induced by suspended particulate matter deposition.
    Liu C; Du Y; Zhong J; Zhang L; Huang W; Han C; Chen K; Gu X
    Water Res; 2022 Oct; 224():119067. PubMed ID: 36108397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.
    Wang J; Jiang X; Zheng B; Niu Y; Wang K; Wang W; Kardol P
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19507-17. PubMed ID: 26263882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial Fe(III) reduction as a potential iron source from Holocene sediments beneath Larsen Ice Shelf.
    Jung J; Yoo KC; Rosenheim BE; Conway TM; Lee JI; Yoon HI; Hwang CY; Yang K; Subt C; Kim J
    Nat Commun; 2019 Dec; 10(1):5786. PubMed ID: 31857591
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elevated internal phosphorus loading from shallow areas of eutrophic boreal lakes: Insights from porewater geochemistry.
    Zhao S; Hermans M; Niemistö J; Jilbert T
    Sci Total Environ; 2024 Jan; 907():167950. PubMed ID: 37865251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of algal blooms decay on arsenic dynamics at the sediment-water interface of a shallow lake.
    Zeng L; Yan C; Guo J; Zhen Z; Zhao Y; Wang D
    Chemosphere; 2019 Mar; 219():1014-1023. PubMed ID: 30682758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cable bacteria regulate sedimentary phosphorus release in freshwater sediments.
    Xu X; Weng N; Zhang H; van de Velde SJ; Hermans M; Wu F; Huo S
    Water Res; 2023 Aug; 242():120218. PubMed ID: 37390661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction between nitrogen and phosphorus cycles in mining-affected aquatic systems-experiences from field and laboratory measurements.
    Chlot S; Widerlund A; Öhlander B
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5722-36. PubMed ID: 23463280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.