BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26206181)

  • 21. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress.
    Lafontaine J; Tchakarska G; Rodier F; Mes-Masson AM
    BMC Cancer; 2012 Jun; 12():234. PubMed ID: 22691188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of gene expression data reveals novel targets of senescence-associated microRNAs.
    Napolitano M; Comegna M; Succoio M; Leggiero E; Pastore L; Faraonio R; Cimino F; Passaro F
    PLoS One; 2014; 9(6):e98669. PubMed ID: 24905922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Histone modifications contribute to cellular replicative and hydrogen peroxide-induced premature senescence in human embryonic lung fibroblasts.
    Zhang W; Hu D; Ji W; Yang L; Yang J; Yuan J; Xuan A; Zou F; Zhuang Z
    Free Radic Res; 2014 May; 48(5):550-9. PubMed ID: 24528089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Ubiquitin-like with PHD and Ring Finger Domains 1 (UHRF1)/DNA Methyltransferase 1 (DNMT1) Axis Is a Primary Regulator of Cell Senescence.
    Jung HJ; Byun HO; Jee BA; Min S; Jeoun UW; Lee YK; Seo Y; Woo HG; Yoon G
    J Biol Chem; 2017 Mar; 292(9):3729-3739. PubMed ID: 28100769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chlorella vulgaris modulates the expression of senescence-associated genes in replicative senescence of human diploid fibroblasts.
    Jaafar F; Durani LW; Makpol S
    Mol Biol Rep; 2020 Jan; 47(1):369-379. PubMed ID: 31642042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress.
    Hütter E; Unterluggauer H; Uberall F; Schramek H; Jansen-Dürr P
    Exp Gerontol; 2002; 37(10-11):1165-74. PubMed ID: 12470828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints.
    Chen QM
    Ann N Y Acad Sci; 2000 Jun; 908():111-25. PubMed ID: 10911952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers.
    Biniossek ML; Lechel A; Rudolph KL; Martens UM; Zimmermann S
    J Proteomics; 2013 Oct; 91():515-35. PubMed ID: 23969227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses?
    Abbadie C; Pluquet O; Pourtier A
    Cell Mol Life Sci; 2017 Dec; 74(24):4471-4509. PubMed ID: 28707011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A genomics approach identifies senescence-specific gene expression regulation.
    Lackner DH; Hayashi MT; Cesare AJ; Karlseder J
    Aging Cell; 2014 Oct; 13(5):946-50. PubMed ID: 24863242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence.
    Yentrapalli R; Azimzadeh O; Kraemer A; Malinowsky K; Sarioglu H; Becker KF; Atkinson MJ; Moertl S; Tapio S
    J Proteomics; 2015 Aug; 126():12-23. PubMed ID: 26013412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.
    Marthandan S; Menzel U; Priebe S; Groth M; Guthke R; Platzer M; Hemmerich P; Kaether C; Diekmann S
    Biol Res; 2016 Jul; 49(1):34. PubMed ID: 27464526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of novel candidates for replicative senescence by functional proteomics.
    Benvenuti S; Cramer R; Bruce J; Waterfield MD; Jat PS
    Oncogene; 2002 Jun; 21(28):4403-13. PubMed ID: 12080471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The proteomic study of serially passaged human skin fibroblast cells uncovers down-regulation of the chromosome condensin complex proteins involved in replicative senescence.
    Meng Q; Gao J; Zhu H; He H; Lu Z; Hong M; Zhou H
    Biochem Biophys Res Commun; 2018 Nov; 505(4):1112-1120. PubMed ID: 30336977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DPY30 regulates pathways in cellular senescence through ID protein expression.
    Simboeck E; Gutierrez A; Cozzuto L; Beringer M; Caizzi L; Keyes WM; Di Croce L
    EMBO J; 2013 Aug; 32(16):2217-30. PubMed ID: 23872946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Replicative senescence, aging and growth-regulatory transcription factors.
    Dimri GP; Testori A; Acosta M; Campisi J
    Biol Signals; 1996; 5(3):154-62. PubMed ID: 8864060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA regulation of ionizing radiation-induced premature senescence.
    Wang Y; Scheiber MN; Neumann C; Calin GA; Zhou D
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(3):839-48. PubMed ID: 21093163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative analysis of the cell biology of senescence and aging.
    Hwang ES; Yoon G; Kang HT
    Cell Mol Life Sci; 2009 Aug; 66(15):2503-24. PubMed ID: 19421842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts.
    Petropoulou C; Trougakos IP; Kolettas E; Toussaint O; Gonos ES
    FEBS Lett; 2001 Dec; 509(2):287-97. PubMed ID: 11741605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of global DNA methylation profiles in replicative versus premature senescence.
    Zhang W; Ji W; Yang J; Yang L; Chen W; Zhuang Z
    Life Sci; 2008 Sep; 83(13-14):475-80. PubMed ID: 18723031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.