These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 26206245)
1. Effect of aerobic and microaerophilic culture in the growth dynamics of Saccharomyces cerevisiae and in training of quiescent and non-quiescent subpopulations. Carbó R; Ginovart M; Carta A; Portell X; del Valle LJ Arch Microbiol; 2015 Oct; 197(8):991-9. PubMed ID: 26206245 [TBL] [Abstract][Full Text] [Related]
2. Differences in stationary-phase cells of a commercial Saccharomyces cerevisiae wine yeast grown in aerobic and microaerophilic batch cultures assessed by electric particle analysis, light diffraction and flow cytometry. Portell X; Ginovart M; Carbó R; Vives-Rego J J Ind Microbiol Biotechnol; 2011 Jan; 38(1):141-51. PubMed ID: 20820858 [TBL] [Abstract][Full Text] [Related]
3. Zeta potential changes of Saccharomyces cerevisiae during fermentative and respiratory cycles. Lavaisse LM; Hollmann A; Nazareno MA; Disalvo EA Colloids Surf B Biointerfaces; 2019 Feb; 174():63-69. PubMed ID: 30439639 [TBL] [Abstract][Full Text] [Related]
4. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359 [TBL] [Abstract][Full Text] [Related]
5. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Hjortmo S; Patring J; Andlid T Int J Food Microbiol; 2008 Mar; 123(1-2):93-100. PubMed ID: 18234383 [TBL] [Abstract][Full Text] [Related]
6. The effect of dissolved oxygen concentration on the growth physiology of Saccharomyces cerevisiae whi2 mutants. Rahman DR; Sudbery PE; Kelly S; Marison IW J Gen Microbiol; 1988 Aug; 134(8):2241-8. PubMed ID: 3075657 [TBL] [Abstract][Full Text] [Related]
7. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304 [TBL] [Abstract][Full Text] [Related]
8. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri. Møller K; Bro C; Piskur J; Nielsen J; Olsson L FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311 [TBL] [Abstract][Full Text] [Related]
9. The effect of vitamins and amino acids on glucose uptake in aerobic chemostat cultures of three Saccharomyces cerevisiae strains. de Kock SH; du Preez JC; Kilian SG Syst Appl Microbiol; 2000 Apr; 23(1):41-6. PubMed ID: 10879977 [TBL] [Abstract][Full Text] [Related]
10. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae. Bijkerk AH; Hall RJ Biotechnol Bioeng; 1977 Feb; 19(2):267-96. PubMed ID: 322740 [TBL] [Abstract][Full Text] [Related]
11. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Davidson GS; Joe RM; Roy S; Meirelles O; Allen CP; Wilson MR; Tapia PH; Manzanilla EE; Dodson AE; Chakraborty S; Carter M; Young S; Edwards B; Sklar L; Werner-Washburne M Mol Biol Cell; 2011 Apr; 22(7):988-98. PubMed ID: 21289090 [TBL] [Abstract][Full Text] [Related]
12. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. Satroutdinov AD; Kuriyama H; Kobayashi H FEMS Microbiol Lett; 1992 Nov; 77(1-3):261-7. PubMed ID: 1334018 [TBL] [Abstract][Full Text] [Related]
13. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. van Rensburg E; den Haan R; Smith J; van Zyl WH; Görgens JF Appl Microbiol Biotechnol; 2012 Oct; 96(1):197-209. PubMed ID: 22526794 [TBL] [Abstract][Full Text] [Related]
14. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066. Postma E; Scheffers WA; van Dijken JP Yeast; 1989; 5(3):159-65. PubMed ID: 2660462 [TBL] [Abstract][Full Text] [Related]
17. Quantitative studies of the development of S. cerevisiae mitochondria. Ferdouse M; Rickard PA; Moss FJ; Blanch HW Biotechnol Bioeng; 1972 Nov; 14(6):1007-26. PubMed ID: 4567261 [No Abstract] [Full Text] [Related]
18. The influence of conditions of growth on the endogenous metabolism of Saccharomyces cerevisiae: effect on respiratory activity. Wilson K; McLeod BJ; Cooper R Antonie Van Leeuwenhoek; 1977; 43(3-4):233-44. PubMed ID: 23721 [No Abstract] [Full Text] [Related]
19. Transient behaviour of baker's yeast during enforced periodical variation of dissolved oxygen concentration. Abel C; Hübner U; Schügerl K J Biotechnol; 1994 Jan; 32(1):45-57. PubMed ID: 7764451 [TBL] [Abstract][Full Text] [Related]
20. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae. Imura M; Iwakiri R; Bamba T; Fukusaki E J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]