These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26206491)

  • 1. Non-linear optical response by functionalized gold nanospheres: identifying design principles to maximize the molecular photo-release.
    Bergamini L; Voliani V; Cappello V; Nifosì R; Corni S
    Nanoscale; 2015 Aug; 7(32):13345-57. PubMed ID: 26206491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton molecular photorelease in click-chemistry-functionalized gold nanoparticles.
    Voliani V; Ricci F; Signore G; Nifosì R; Luin S; Beltram F
    Small; 2011 Dec; 7(23):3271-5. PubMed ID: 22012898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear optical detection of proteins based on localized surface plasmons in surface immobilized gold nanospheres.
    Fukuba SY; Tsuboi K; Abe S; Kajikawa K
    Langmuir; 2008 Aug; 24(15):8367-72. PubMed ID: 18570447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN; Larmour IA; Chen YC; Wark AW; Tileli V; McComb DW; Faulds K; Graham D
    Nanoscale; 2013 Jan; 5(2):765-71. PubMed ID: 23233034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres.
    Slablab A; Le Xuan L; Zielinski M; de Wilde Y; Jacques V; Chauvat D; Roch JF
    Opt Express; 2012 Jan; 20(1):220-7. PubMed ID: 22274345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid polymer-metal nanospheres based on highly branched gold nanoparticles for potential medical applications.
    Li SY; Wang M
    IET Nanobiotechnol; 2012 Dec; 6(4):136-43. PubMed ID: 23101867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fano resonance in a gold nanosphere with a J-aggregate coating.
    Fales AM; Norton SJ; Crawford BM; DeLacy BG; Vo-Dinh T
    Phys Chem Chem Phys; 2015 Oct; 17(38):24931-6. PubMed ID: 26344505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning two-photon photoluminescence of gold nanoparticle aggregates with DNA and its application as turn-on photoluminescence probe for DNA sequence detection.
    Yuan P; Ma R; Guan Z; Gao N; Xu QH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13149-56. PubMed ID: 24983536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.
    Yang YY; Scrinzi A; Husakou A; Li QG; Stebbings SL; Süßmann F; Yu HJ; Kim S; Rühl E; Herrmann J; Lin XC; Kling MF
    Opt Express; 2013 Jan; 21(2):2195-205. PubMed ID: 23389200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-multipole simulation of optical nearfields in discrete metal nanosphere assemblies.
    Chien WY; Szkopek T
    Opt Express; 2008 Feb; 16(3):1820-35. PubMed ID: 18542261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reagentless functionalization of gold nanoparticles via a 3 + 2 Huisgen cycloaddition.
    Limapichat W; Basu A
    J Colloid Interface Sci; 2008 Feb; 318(1):140-4. PubMed ID: 17936777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.
    Saija R; Denti P; Borghese F; Maragò OM; Iatì MA
    Opt Express; 2009 Jun; 17(12):10231-41. PubMed ID: 19506677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles.
    Niu J; Shin YJ; Son J; Lee Y; Ahn JH; Yang H
    Opt Express; 2012 Aug; 20(18):19690-6. PubMed ID: 23037021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdosimetry of X-ray-irradiated gold nanoparticles.
    Garnica-Garza HM
    Radiat Prot Dosimetry; 2013 Jun; 155(1):59-63. PubMed ID: 23118439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative study of the environmental effects on the optical response of gold nanorods.
    Davletshin YR; Lombardi A; Cardinal MF; Juvé V; Crut A; Maioli P; Liz-Marzán LM; Vallée F; Del Fatti N; Kumaradas JC
    ACS Nano; 2012 Sep; 6(9):8183-93. PubMed ID: 22931408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing and enhancement of second-harmonic generation in optical gap antennas.
    Berthelot J; Bachelier G; Song M; Rai P; Colas des Francs G; Dereux A; Bouhelier A
    Opt Express; 2012 May; 20(10):10498-508. PubMed ID: 22565675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis.
    Centeno A; Xie F; Alford N
    IET Nanobiotechnol; 2013 Jun; 7(2):50-8. PubMed ID: 24046905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient enhancement and spectral narrowing of the photothermal effect of plasmonic nanoparticles under pulsed excitation.
    Lukianova-Hleb EY; Volkov AN; Wu X; Lapotko DO
    Adv Mater; 2013 Feb; 25(5):772-6. PubMed ID: 23161793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.