These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26206712)

  • 21. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.
    Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of free-standing Cu nanorod arrays on Cu disc by template-assisted electrodeposition.
    Chen X; Duan H; Zhou Z; Liang J; Gnanaraj J
    Nanotechnology; 2008 Sep; 19(36):365306. PubMed ID: 21828871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and Characterization of CuFe
    Wang L; Bock DC; Li J; Stach EA; Marschilok AC; Takeuchi KJ; Takeuchi ES
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8770-8785. PubMed ID: 29461030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution-grown 3D Cu2O networks for efficient solar water splitting.
    Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D
    Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surfaces/Interfaces Modification for Vacancies Enhancing Lithium Storage Capability of Cu
    Song H; Gong Y; Su J; Li Y; Li Y; Gu L; Wang C
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35137-35144. PubMed ID: 30234297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries.
    Wang Y; Liu Y; Zheng J; Zheng H; Mei Z; Du X; Li H
    Nanotechnology; 2013 Oct; 24(42):424011. PubMed ID: 24067781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Oxidation of Cu
    Lu C; Li Z; Ren L; Su N; Lu D; Liu Z
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31269709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray absorption spectroscopy of lithium insertion and de-insertion in copper birnessite nanoparticle electrodes.
    Pelliccione CJ; Li YR; Marschilok AC; Takeuchi KJ; Takeuchi ES
    Phys Chem Chem Phys; 2016 Jan; 18(4):2959-67. PubMed ID: 26735498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step simple sonochemical fabrication and photocatalytic properties of Cu2O-rGO composites.
    Abulizi A; Yang GH; Zhu JJ
    Ultrason Sonochem; 2014 Jan; 21(1):129-35. PubMed ID: 23958354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries.
    Chen K; Xue D
    Phys Chem Chem Phys; 2014 Jun; 16(23):11168-72. PubMed ID: 24777357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application.
    Zhong JH; Li GR; Wang ZL; Ou YN; Tong YX
    Inorg Chem; 2011 Feb; 50(3):757-63. PubMed ID: 21182331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability.
    Wang P; Ng YH; Amal R
    Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electroactive Cu
    Gu W; Zheng W; Liu H; Zhao Y
    Anal Chim Acta; 2021 Mar; 1150():338216. PubMed ID: 33583548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ synthesis of C/Cu/ZnO porous hybrids as anode materials for lithium ion batteries.
    Wang Y; Jiang X; Yang L; Jia N; Ding Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1525-32. PubMed ID: 24417493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Layered oxysulfides Sr2MnO2Cu2m-0.5Sm+1 (m = 1, 2, and 3) as insertion hosts for Li ion batteries.
    Indris S; Cabana J; Rutt OJ; Clarke SJ; Grey CP
    J Am Chem Soc; 2006 Oct; 128(41):13354-5. PubMed ID: 17031937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.
    Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM
    ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stoichiometry, Morphology, and Size-Controlled Electrochemical Fabrication of Cu
    Kartal C; Hanedar Y; Öznülüer T; Demir Ü
    Langmuir; 2017 Apr; 33(16):3960-3967. PubMed ID: 28391680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrolysis-Coupled Redox Reaction to 3D Cu/Fe
    Gu H; Zhang Y; Huang M; Chen F; Yang Z; Fan X; Li S; Zhang W; Yang S; Li M
    Inorg Chem; 2017 Jul; 56(14):7657-7667. PubMed ID: 28677962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation.
    Long M; Tan L; Liu H; He Z; Tang A
    Biosens Bioelectron; 2014 Sep; 59():243-50. PubMed ID: 24732602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.