These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 2620705)

  • 21. Electric organ discharge rhythms and social interactions in a weakly electric fish, Rhamphichthys rostratus, (Rhamphichthyidae, Gymnotiformes) in an aquarium.
    Pimentel-Souza F; Fernandes-Souza N
    Exp Biol; 1987; 46(3):169-76. PubMed ID: 3582587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time domain processing of electric organ discharge waveforms by pulse-type electric fish.
    Hopkins CD; Westby GW
    Brain Behav Evol; 1986; 29(1-2):77-104. PubMed ID: 3594199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.
    Jun JJ; Longtin A; Maler L
    J Neurophysiol; 2012 Apr; 107(7):1996-2007. PubMed ID: 22190625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agonistic behavior of the weakly electric fish, Gnathonemus petersii (Mormyridae, Osteoglossomorpha).
    Crockett DP
    J Comp Psychol; 1986 Mar; 100(1):3-14. PubMed ID: 3698579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Communication in the weakly electric fish Sternopygus macrurus. I. The neural basis of conspecific EOD detection.
    Fleishman LJ
    J Comp Physiol A; 1992 Mar; 170(3):335-48. PubMed ID: 1593503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens.
    Dunlap KD; Zakon HH
    Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiological and molecular genetic evidence for sympatrically occuring cryptic species in African weakly electric fishes (Teleostei: Mormyridae: Campylomormyrus).
    Feulner PG; Kirschbaum F; Schugardt C; Ketmaier V; Tiedemann R
    Mol Phylogenet Evol; 2006 Apr; 39(1):198-208. PubMed ID: 16271299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive radiation in the Congo River: an ecological speciation scenario for African weakly electric fish (Teleostei; Mormyridae; Campylomormyrus).
    Feulner PG; Kirschbaum F; Tiedemann R
    J Physiol Paris; 2008; 102(4-6):340-6. PubMed ID: 18984043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging of objects through active electrolocation in Gnathonemus petersii.
    von der Emde G; Schwarz S
    J Physiol Paris; 2002; 96(5-6):431-44. PubMed ID: 14692491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase and amplitude maps of the electric organ discharge of the weakly electric fish, Apteronotus leptorhynchus.
    Rasnow B; Assad C; Bower JM
    J Comp Physiol A; 1993 May; 172(4):481-91. PubMed ID: 8315610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of social interaction on the electric organ discharge in a mormyrid fish, Gnathonemus petersii (Mormyridae, Teleostei).
    Terleph TA; Moller P
    J Exp Biol; 2003 Jul; 206(Pt 14):2355-62. PubMed ID: 12796452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human chorionic gonadotropin-induced shifts in the electrosensory system of the weakly electric fish, Sternopygus.
    Zakon HH; Yan HY; Thomas P
    J Neurobiol; 1990 Jul; 21(5):826-33. PubMed ID: 2394995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial aspects of electrolocation in the mormyrid fish, Gnathonemus petersii.
    Push S; Moller P
    J Physiol (Paris); 1979; 75(4):355-7. PubMed ID: 512970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.
    Carlson BA
    J Neurosci; 2003 Nov; 23(31):10128-36. PubMed ID: 14602829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The electric organ discharges of the Petrocephalus species (Teleostei: Mormyridae) of the Upper Volta system.
    Moritz T; Engelmann J; Linsenmair KE; von der Emde G
    J Fish Biol; 2009 Jan; 74(1):54-76. PubMed ID: 20735524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.