These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 262075)

  • 1. The effect of mitochondrial dysfunction on glucose metabolism during shock.
    Rhodes RS
    Adv Shock Res; 1978; 1():105-16. PubMed ID: 262075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction of the liver and hypoglycemia in hemorrhagic shock.
    Rhodes RS; DePalma RG
    Surg Gynecol Obstet; 1980 Mar; 150(3):347-52. PubMed ID: 7355358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mitochondrial dysfunction on hepatic glycogenolysis in late hemorrhagic shock.
    Rhodes RS
    Surg Forum; 1979; 30():14-6. PubMed ID: 538577
    [No Abstract]   [Full Text] [Related]  

  • 4. The relationship of glycogen, glucose, and lactate to mitochondrial dysfunction in late hemorrhagic shock.
    Rhodes RS
    J Surg Res; 1978 Jun; 24(6):507-12. PubMed ID: 661284
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of hemorrhagic shock on hepatic energy metabolism in carbon tetrachloride-induced cirrhotic rats.
    Ikai I; Shimahara Y; Wakashiro S; Ozaki N; Tokunaga Y; Tanaka A; Morimoto T; Ozawa K
    Circ Shock; 1988 Dec; 26(4):365-74. PubMed ID: 3214931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of hepatic mitochondrial redox potential on the concentrations of plasma amino acids following hemorrhagic shock in rats.
    Ikai I; Ozaki N; Shimahara Y; Wakashiro S; Tokunaga Y; Tanaka A; Ozawa K
    Circ Shock; 1989 Jan; 27(1):63-72. PubMed ID: 2917373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of insulin and glucose during resuscitation from hemorrhagic shock increases hepatic ATP.
    Chang CG; Van Way CW; Dhar A; Helling T; Hahn Y
    J Surg Res; 2000 Aug; 92(2):171-6. PubMed ID: 10896818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal oxygen and lactate metabolism in hemorrhagic shock. An experimental study.
    Nelimarkka O
    Acta Chir Scand Suppl; 1984; 518():1-44. PubMed ID: 6592913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat.
    Pearce FJ; Connett RJ; Drucker WR
    Surgery; 1985 Oct; 98(4):625-31. PubMed ID: 4049240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of ischemically induced uncoupled oxidative phosphorylation by restoration of adequate perfusion.
    Rhodes RS; DePalma RG
    Surg Forum; 1976; 27(62):13-5. PubMed ID: 1019827
    [No Abstract]   [Full Text] [Related]  

  • 11. Altered cellular calcium regulation and hepatic glucose production during hemorrhagic shock.
    Maitra SR; Geller ER; Pan W; Kennedy PR; Higgins LD
    Circ Shock; 1992 Sep; 38(1):14-21. PubMed ID: 1394859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of high blood glucose concentration during hemorrhagic shock in alloxan diabetic rats.
    Yamamoto M; Ozawa K; Tobe T
    Circ Shock; 1981; 8(1):49-57. PubMed ID: 7237684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in the proton ATPase activity of rat liver mitochondria after hemorrhagic shock.
    Iwata S; Tanaka A; Ozawa K
    J Lab Clin Med; 1992 Sep; 120(3):420-7. PubMed ID: 1387675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoglycemia induced by insulin increases hepatic capacity to produce glucose from gluconeogenic amino acids.
    Borba-Murad GR; Vardanega-Peicher M; Souza HM; Lopes G; Fonseca MH; Bazotte RB
    Zhongguo Yao Li Xue Bao; 1999 Dec; 20(12):1083-6. PubMed ID: 11189196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy response in the liver of diabetic rats to hemorrhagic shock: physiologic significance of decreased insulin response.
    Ida T; Yamamoto M; Yamada T; Ozawa K; Honjo I; Kamano T; Garbus J; Cowley RA
    Am Surg; 1979 Apr; 45(4):238-45. PubMed ID: 434621
    [No Abstract]   [Full Text] [Related]  

  • 16. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms involved in the effect of M6434 on experimental hemorrhagic shock: II. Effects on energy metabolism and organ blood flow.
    Uemura A; Dabasaki T; Notsu T; Yamasaki F; Nakakuki M; Shimojo M; Kosuzume H; Okada K
    Circ Shock; 1989 Mar; 27(3):183-91. PubMed ID: 2706753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of bicarbonate and insulin on the mitochondria-cytoplasmic interactions in the rat liver in vivo].
    Kaminskiĭ IuG; Kosenko EA; Derkachev EF; Shchipakin VN; Kondrashova MN
    Vopr Med Khim; 1982; 28(6):91-4. PubMed ID: 6760542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The action of glibenclamide on glycogen catabolism and related parameters in the isolated perfused rat liver.
    Carvalho-Martini M; de Oliveira DS; Suzuki-Kemmelmeier F; Bracht A
    Res Commun Mol Pathol Pharmacol; 2006; 119(1-6):115-26. PubMed ID: 17974101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-related changes in tissue energy reserves during hemorrhagic shock.
    Pearce FJ; Connett RJ; Drucker WR
    J Surg Res; 1985 Nov; 39(5):390-8. PubMed ID: 4058001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.